【题目】如图所示,椭圆
的左、右顶点分别为
,离心率
,长轴与短轴的长度之和为
.
![]()
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)在椭圆
上任取点
(与
两点不重合),直线
交
轴于点
,直线
交
轴于点
,证明:
为定值.
【答案】(Ⅰ)
;(Ⅱ)4
【解析】
(Ⅰ)由题意
,2a+2b=10,结合
解得a=3,b=2,即得到椭圆方程;(Ⅱ)设P(x0,y0),直线PA交y轴于点C(0,y1),直线PB交y轴于点D(0,y2),求得直线PA,PB的方程,分别求出y1,y2,再根据向量的数量积即可证明.
(Ⅰ)由题可知
,
,又
解得
.故椭圆
的标准方程为
.
(Ⅱ)解法1:设
,直线
交
轴于点
,直线
交
轴于点
.则
,即
.易知
同向,故
.
因为
,
,所以得直线
的方程为
,令
,则
;直线
的方程为
,令
,则
,
所以
,为定值.
解法2:
的左、右顶点分别为
、
,则有![]()
由(Ⅰ)知,设直线
、
的斜率分别为
,则
.
直线
的方程为
,令
得
;直线
的方程为![]()
令
得
.所以
.
解法3:
的左、右顶点分别为
、
,则
如题图所示,![]()
.
科目:高中数学 来源: 题型:
【题目】为推动更多人阅读,联合国教科文组织确定每年的
月
日为“世界读书日”.设立目的是希望居住在世界各地的人,无论你是年老还是年轻,无论你是贫穷还是富裕,都能享受阅读的乐趣,都能尊重和感谢为人类文明做出过巨大贡献的思想大师们,都能保护知识产权.为了解不同年龄段居民的主要阅读方式,某校兴趣小组在全市随机调查了
名居民,经统计这
人中通过电子阅读与纸质阅读的人数之比为
,将这
人按年龄分组,其中统计通过电子阅读的居民得到的频率分布直方图如图所示.
(1)求
的值及通过电子阅读的居民的平均年龄;
![]()
![]()
(2)把年龄在第
组的居民称为青少年组,年龄在第
组的居民称为中老年组,若选出的
人中通过纸质阅读的中老年有
人,请完成上面
列联表,则是否有
的把握认为阅读方式与年龄有关?
![]()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出以下四个命题:
(1)命题
,使得
,则
,都有
;
(2)已知函数f(x)=|log2x|,若a≠b,且f(a)=f(b),则ab=1;
(3)若平面α内存在不共线的三点到平面β的距离相等,则平面α平行于平面β;
(4)已知定义在
上的函数
满足条件
,且函数
为奇函数,则函数
的图象关于点
对称.
其中真命题的序号为______________.(写出所有真命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
(a>b>0),四点P1(1,1),P2(0,1),P3(–1,
),P4(1,
)中恰有三点在椭圆C上.
(1)求C的方程;
(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
.
(1)若直线
不经过第四象限,求
的取值范围;
(2)若直线
交
轴负半轴于点
,交
轴正半轴于点
,
为坐标原点,设
的面积为
,求
的最小值及此时直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆
的左、右焦点分别为
、
,点
为椭圆
上任意一点,
关于原点
的对称点为
,有
,且
的最大值
.
![]()
(1)求椭圆
的标准方程;
(2)若
是
关于
轴的对称点,设点
,连接
与椭圆
相交于点
,问直线
与
轴是否交于一定点.如果是,求出该定点坐标;如果不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
中,
,
,
.
(1)证明:数列
是等比数列,并求数列
的通项公式;
(2)在数列
中,是否存在连续三项成等差数列?若存在,求出所有符合条件的项;若不存在,请说明理由;
(3)若
且
,
,求证:使得
,
,
成等差数列的点列
在某一直线上.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com