精英家教网 > 高中数学 > 题目详情
2.如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的中点.
(1)若PA=PD,求证:平面PQB⊥平面PAD;
(2)点M在线段PC上,PM=$\frac{1}{3}$PC,若平面PAD⊥平面ABCD,且PA=PD=AD=2,求平面MBQ与平面CBQ夹角的大小.

分析 (1)由题意知:PQ⊥AD,BQ⊥AD,从而AD⊥平面PQB,由此能证明平面PQB⊥平面PAD.
(2)以Q为坐标原点,分别以QA,QB,QP为x,y,z轴,建立空间直角坐标系,利用向量法能求出平面MBQ与平面CBQ的夹角.

解答 证明:(1)由题意知:PQ⊥AD,BQ⊥AD,PQ∩BQ=Q,
∴AD⊥平面PQB,
又∵AD?平面PAD,
∴平面PQB⊥平面PAD.
(2)∵PA=PD=AD,Q为AD的中点,
∴PQ⊥AD,
∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,
∴PQ⊥平面ABCD,
以Q为坐标原点,分别以QA,QB,QP为x,y,z轴,
建立如图所求的空间直角坐标系,
由题意知:Q(0,0,0),A(1,0,0),P(0,0,$\sqrt{3}$),B(0,$\sqrt{3}$,0),C(-2,$\sqrt{3}$,0),
∴$\overrightarrow{QM}$=$\frac{2}{3}\overrightarrow{QP}+\frac{1}{3}\overrightarrow{QC}$=(-$\frac{2}{3},\frac{\sqrt{3}}{3},\frac{2\sqrt{3}}{3}$),
设$\overrightarrow{n}$是平面MBQ的一个法向量,
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{QM}=-\frac{2}{3}x+\frac{\sqrt{3}}{3}y+\frac{2\sqrt{3}}{3}z=0}\\{\overrightarrow{n}•\overrightarrow{OB}=\sqrt{3}y=0}\end{array}\right.$,取x=$\sqrt{3}$,得$\overrightarrow{n}$=($\sqrt{3},0,1$),
又∵$\overrightarrow{m}$=(0,0,1)平面BQC的一个法向量,
∴cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{1}{2}$,
∴平面MBQ与平面CBQ夹角为60°.

点评 本题考查面面垂直的证明,考查二面角的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知f(x)是定义在R上的奇函数,满足f(x+4)=f(x)+f(2),且对任意的x1,x2∈[0,2],都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立.现给出下列命题:①f(2)=0;②函数f(x)的图象关于点(2,0)成对称中心;③函数f(x)在(-4,0)上单调递减;④函数f(x)在(-6,6)上有3个零点.
其中正确命题的序号是①②③(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,棱长为3的正方体的顶点A在平面α上,三条棱AB,AC,AD都在平面α的同侧,若顶点B,C到平面α的距离分别为1,$\sqrt{2}$,则顶点D到平面α的距离是$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=log2|x|-1.若a=f(-4),b=f(2sinθ),c=2f(sinθ),θ≠$\frac{kπ}{2}$,k∈Z,则a,b,c的大小关系为(  )
A.a>b>cB.c>b>aC.a>c>bD.b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知一个三棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的四个面中,最大面积为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某三棱锥的三视图如图所示,则该三棱锥的四个面中,最大的面积是(  )
A.$\frac{{3\sqrt{5}}}{2}$B.$3\sqrt{6}$C.$2\sqrt{3}$D.$\frac{{5\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,四边形ABCD是矩形,AB=4,BC=2$\sqrt{3}$,四边形CDEF是菱形,∠DEF=60°,且平面CDEF⊥平面ABCD,M,N分别是线段EF,CD上的点,满足EM=3MF.CN=3ND,AC与BN交于点P.
(Ⅰ)求证:AC⊥平面BMN;
(Ⅱ)求点P到平面BCF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知α是钝角,β是锐角,则α-β的范围是(0°,180°).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π),函数f(x)的图象如图所示,则f(0)的值为(  )
A.$\sqrt{2}$B.-$\sqrt{2}$C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

同步练习册答案