精英家教网 > 高中数学 > 题目详情
13.如图,棱长为3的正方体的顶点A在平面α上,三条棱AB,AC,AD都在平面α的同侧,若顶点B,C到平面α的距离分别为1,$\sqrt{2}$,则顶点D到平面α的距离是$\sqrt{6}$.

分析 本题的条件正规,但位置不正规.牵涉到的知识虽然只有线面距离和线面角,但难于下手.出路何在?在正方体的8个顶点中,有关系的只有4个(其他顶点可不予理会).这4点组成直角四面体,这就是本题的根.所以最终归结为:已知直角四面体的3个顶点A,B,C到平面M的距离依次为0,1,$\sqrt{2}$,求顶点D到平面M的距离.

解答 解:如图,连结BC、CD、BD,则四面体A-BCD为直角四面体.作平面M的法线AH,再作,BB1⊥平面M于B1,CC1⊥平面M于C1,DD1⊥平面M于D1
连结AB1,AC1,AD1,令AH=h,DA=a,DB=b,DC=c,
由等体积可得$\frac{1}{{h}^{2}}$=$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$+$\frac{1}{{c}^{2}}$,
∴$\frac{{h}^{2}}{{a}^{2}}$+$\frac{{h}^{2}}{{b}^{2}}$+$\frac{{h}^{2}}{{c}^{2}}$=1
令∠BAB1=α,∠CAC1=β,∠DAD1=γ,
可得sin2α+sin2β+sin2γ=1,
设DD1=m,∵BB1=1,CC1=$\sqrt{2}$,
∴$(\frac{1}{3})^{2}+(\frac{\sqrt{2}}{3})^{2}+(\frac{m}{3})^{2}$=1
解得m=$\sqrt{6}$.即所求点D到平面α的距离为$\sqrt{6}$.
故答案为:$\sqrt{6}$.

点评 本题考查点D到平面α的距离,考查线面角,考查学生分析解决问题的能力,难度大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=sin(2x+$\frac{π}{4}$).
(Ⅰ)用“五点法”作出f(x)在长度为一个周期的闭区间上的简图;
(Ⅱ)写出f(x)的对称中心以及单调递增区间;
(Ⅲ)求f(x)的最大值以及取得最大值时x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某几何体的三视图如图所示,则该几何体的体积为(  )
A.48B.54C.56D.58

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.四棱柱ABCD-A1B1C1D1的底面ABCD为矩形,AB=2,AD=4,AA1=6,∠A1AB=∠A1AD=60°,则AC1的长为(  )
A.$8\sqrt{2}$B.46C.$2\sqrt{23}$D.32

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.一个棱长为2的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该几何体的体积是$\frac{23}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知一个几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{2\sqrt{3}}{3}$B.$\frac{4\sqrt{3}}{3}$C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.多面体MN-ABCD的底面ABCD为矩形,其正(主)视图和侧(左)视图如图,其中正(主)视图为等腰梯形,侧(左)视图为等腰三角形,则AM的长为(  )
A.$\sqrt{3}$B.$\sqrt{5}$C.$\sqrt{6}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的中点.
(1)若PA=PD,求证:平面PQB⊥平面PAD;
(2)点M在线段PC上,PM=$\frac{1}{3}$PC,若平面PAD⊥平面ABCD,且PA=PD=AD=2,求平面MBQ与平面CBQ夹角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知a>0,且a≠1,命题p:函数y=loga(x+1)在x∈(0,+∞)上单调递减,命题q:曲线y=x2+(2a-3)x+1与x轴交于不同的两点.若“p∨q”为假,则a的取值范围为(  )
A.(1,$\frac{5}{2}$]B.(-∞,$\frac{1}{2}$]∪(1,$\frac{5}{2}$]C.[$\frac{1}{2}$,$\frac{5}{2}$)D.[$\frac{1}{2}$,1)∪[$\frac{5}{2}$,+∞)

查看答案和解析>>

同步练习册答案