精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=sin(2x+$\frac{π}{4}$).
(Ⅰ)用“五点法”作出f(x)在长度为一个周期的闭区间上的简图;
(Ⅱ)写出f(x)的对称中心以及单调递增区间;
(Ⅲ)求f(x)的最大值以及取得最大值时x的集合.

分析 (1)根据五点法作图的方法先取值,然后描点即可得到图象.
(2)根据函数的对称性以及函数的单调性即可得到结论.
(3)根据函数最值的性质解方程即可.

解答 解:(1)列表:

x-$\frac{π}{8}$$\frac{π}{8}$$\frac{3π}{8}$$\frac{5π}{8}$$\frac{7π}{8}$
2x+$\frac{π}{4}$0$\frac{π}{2}$π$\frac{3π}{2}$
y010-10
描点、连线如图所示:

(2)解:令2x+$\frac{π}{4}$=kπ,k∈Z,
解得:x=$\frac{1}{2}$kπ-$\frac{π}{8}$,k∈Z,
则函数y=sin(2x+$\frac{π}{4}$)的图象的对称中心的坐标是($\frac{1}{2}$kπ-$\frac{π}{8}$,0)k∈Z.
令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,k∈z,从而可求得 f(x)的单调递增区间为:[kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$],k∈Z.
(3)由2x+$\frac{π}{4}$=2kπ+$\frac{π}{2}$即x=kπ+$\frac{π}{8}$,k∈Z时,函数f(x)取得最大值1,此时x的集合为{x|x=kπ+$\frac{π}{8}$,k∈Z}.

点评 本题主要考查三角函数的图象的作法,考查了正弦函数的对称性,单调性,利用五点法是解决三角函数图象的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知从某批产品中随机抽取1件是二等品的概率为0.2.
(1)若从该产品中有放回地抽取产品2次,每次抽取1件,设事件A:“取出的2件产品中至多有1件是二等品”,求P(A);
(2)若该批产品共有20件,从中任意抽取2件,X表示取出的2件产品中二等品的件数,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,在△ABC中,点D是边BC的中点,点G在AD上,且是△ABC的重心,则用向量$\overrightarrow{AB},\overrightarrow{AC}$表示$\overrightarrow{BG}$为(  )
A.$\overrightarrow{BG}=-\frac{2}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}$B.$\overrightarrow{BG}=-\frac{1}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}$C.$\overrightarrow{BG}=\frac{2}{3}\overrightarrow{AB}-\frac{1}{3}\overrightarrow{AC}$D.$\overrightarrow{BG}=\frac{2}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A={x|y=$\sqrt{x-1}$},B={x|-1≤2x-1≤3},则A∩B=(  )
A.[0,1]B.[1,2]C.[1,$\frac{3}{2}$]D.[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若向量$\overrightarrow{a}$=(4,3),$\overrightarrow{b}$=(-1,-2),则$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影为(  )
A.-2B.2C.-2$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某中学举办电脑知识竞赛,满分为100分,80分以上为优秀(含80分),现将高一两个班参赛学生的成绩进行整理后分成5组;第一组[50,60),第二组[60,70),第三组[70,80),第四组[80,90),第五组[90,100],其中第一、三、四、五小组的频率分别为0.30、0.15、0.10、0.05,而第二小组的频数是40,则参赛的人数以及成绩优秀的概率分别是(  )
A.50,0.15B.50,0.75C.100,0.15D.100,0.75

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知数列{an}通项公式an=($\frac{2}{3}$)n-1(n-8)(n∈N+),则数列{an}的最大项为(  )
A.a13B.a15C.a10和a11D.a16和a17

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f(x)是定义在R上的奇函数,满足f(x+4)=f(x)+f(2),且对任意的x1,x2∈[0,2],都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立.现给出下列命题:①f(2)=0;②函数f(x)的图象关于点(2,0)成对称中心;③函数f(x)在(-4,0)上单调递减;④函数f(x)在(-6,6)上有3个零点.
其中正确命题的序号是①②③(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,棱长为3的正方体的顶点A在平面α上,三条棱AB,AC,AD都在平面α的同侧,若顶点B,C到平面α的距离分别为1,$\sqrt{2}$,则顶点D到平面α的距离是$\sqrt{6}$.

查看答案和解析>>

同步练习册答案