精英家教网 > 高中数学 > 题目详情
7.已知从某批产品中随机抽取1件是二等品的概率为0.2.
(1)若从该产品中有放回地抽取产品2次,每次抽取1件,设事件A:“取出的2件产品中至多有1件是二等品”,求P(A);
(2)若该批产品共有20件,从中任意抽取2件,X表示取出的2件产品中二等品的件数,求随机变量X的分布列和数学期望.

分析 (1)记A0表示事件“取出的2件产品中没有二等品”,A1表示事件“取出的2件产品中恰有1件二等品”,则A1与A0互斥,且A=A0+A1,由此能求出事件A:“取出的2件产品中至多有1件是二等品”的概率.
(2)随机变量X的所有可能取值为0,1,2,分别求出相应的概率,由此能求出X的分布列和数学期望.

解答 解:(1)记A0表示事件“取出的2件产品中没有二等品”,
A1表示事件“取出的2件产品中恰有1件二等品”,
则A1与A0互斥,且A=A0+A1
∴P(A)=P(A0)+P(A1)=(1-0.2)2+C${\;}_{2}^{1}$×0.2×(1-0.2)=0.96.
(2)随机变量X的所有可能取值为0,1,2,
该产品共有二等品20×0.2=4(件),
P(X=0)=$\frac{{C}_{16}^{2}}{{C}_{20}^{2}}$=$\frac{12}{19}$,
P(X=1)=$\frac{{C}_{16}^{1}{C}_{4}^{1}}{{C}_{20}^{2}}$=$\frac{32}{90}$,
P(X=2)=$\frac{{C}_{4}^{3}}{{C}_{20}^{2}}$=$\frac{3}{93}$,
∴X的分布列为:

 X 0 1 2
 P $\frac{12}{19}$ $\frac{32}{95}$ $\frac{3}{95}$
E(X)+$0×\frac{12}{19}+1×\frac{32}{95}+2×\frac{3}{95}$=$\frac{2}{5}$.

点评 本题考查概率的求法,是中档题,解题时要认真审题,注意互斥事件概率加法公式和排列组合知识的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.如果执行如图所示的框图,输入N=5,则输出的S等于(  )
A.$\frac{5}{4}$B.$\frac{4}{5}$C.$\frac{6}{5}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{2}{x}$+3lnax-x,g(x)=xex+cosx(a≠0).
(Ⅰ)求函数y=f(x)的单调区间;
(Ⅱ)若?x1∈[1,2],x2∈[0,3],使得f($\begin{array}{l}{x_1}\end{array}$)>g(x2)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知△ABC的内角A,B,C的对边分别为a,b,c,且b=acosc+$\frac{{\sqrt{3}}}{3}$csinA.
(Ⅰ)求角A的大小;
(Ⅱ)当a=3时,求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.(x-y)2(x+y)7的展开式中x3y6的系数为0(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.雾霾天气是一种大气污染状态,PM2.5被认为是造成雾霾天气的“元凶”,PM2.5日均值越小,空气质量越好.国家环境标准设定的PM2.5日均值(微克/立方米)与空气质量等级对应关系如表:
PM2.5日均值
(微克/立方米)
0--3535--7575--115115--150150--250250以上
空气质量等级1级优2级良3级
轻度污染
4级
中度污染
5级
重度污染
6级
严重污染
由某市城市环境监测网获得4月份某5天甲、乙两城市的空气质量指数数据,用茎叶图表示,如图所示.
(Ⅰ)试根据统计数据,分别写出两城区的PM2.5日均值的中位数,并从中位数角度判断哪个城区的空气质量较好?
(Ⅱ)考虑用频率估计概率的方法,试根据统计数据,估计甲城区某一天空气质量等级为3级轻度污染的概率;
(Ⅲ)分别从甲、乙两个城区的统计数据中任取一个,试求这两城区空气质量等级相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知f(x)=$\left\{\begin{array}{l}{{e}^{x-1},x<2}\\{lo{g}_{3}({x}^{2}-1),x≥2}\end{array}\right.$,则f(f(2))的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若集合A={x|(x-1)2<4},B={x||x|>1},则A∩(∁RB)=(  )
A.{x|-1<x≤1}B.{x|-1≤x<1}C.{x|-1≤x≤1}D.{x|-1<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=sin(2x+$\frac{π}{4}$).
(Ⅰ)用“五点法”作出f(x)在长度为一个周期的闭区间上的简图;
(Ⅱ)写出f(x)的对称中心以及单调递增区间;
(Ⅲ)求f(x)的最大值以及取得最大值时x的集合.

查看答案和解析>>

同步练习册答案