精英家教网 > 高中数学 > 题目详情
2.(x-y)2(x+y)7的展开式中x3y6的系数为0(用数字作答)

分析 由题意依次求出(x+y)7中xy6,x2y5,x3y4项的系数,求和即可.

解答 解:多项式(x-y)2(x+y)7=(x2-2xy+y2)(x+y)7
设(x+y)7的通项公式为Tr+1=C7rx7-ryr
令r=6,则T7=C76xy6=7xy6
令r=5,则T6=C75x2y5=21x2y5
令r=4,则T5=C74x3y4=35x3y4
∴(x-y)2(x+y)7的展开式中x3y6的系数为:1×7-2×21+1×35=0,
故答案为:0.

点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.若点P在线段P1P2的延长线上,P1(4,-3),P2(-2,6),且|$\overrightarrow{{P}_{1}P}$|=4|$\overrightarrow{P{P}_{2}}$|,则点P的坐标为(-4,9).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是π,且当x∈(0,$\frac{π}{2}$),f(x)=sinx,则f($\frac{800π}{3}$)=(  )
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图(1)所示,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=1,E、F、G分别为线段PC、PD、BC的中点,现将△PDC折起,使平面PDC⊥平面ABCD,如图(2).
(Ⅰ)求证:AP∥平面EFG;
(Ⅱ)求证:平面PAD⊥平面EFG;
(Ⅲ)求三棱锥C-EFG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某集团公司为了获得更大的收益,决定以后每年投入一笔资金用于广告促销.经过市场调查,每年投入广告费t百万元,可增加销售额约(2t+$\frac{5}{t+2}$-$\frac{5}{2}$)百万元(t≥0).
(1)若公司当年新增收益不少于1.5百万元,求每年投放广告费至少多少百万元?
(2)现公司准备投入6百万元分别用于当年广告费和新产品开发,经预测,每投入新产品开发费x百万元,可增加销售额约($\frac{21}{x-8}$+3x+$\frac{21}{8}$)百万元,问如何分配这笔资金,使该公司获得新增收益最大?(新增收益=新增销售额-投入)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知从某批产品中随机抽取1件是二等品的概率为0.2.
(1)若从该产品中有放回地抽取产品2次,每次抽取1件,设事件A:“取出的2件产品中至多有1件是二等品”,求P(A);
(2)若该批产品共有20件,从中任意抽取2件,X表示取出的2件产品中二等品的件数,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设A,B是两个集合,则“A∪B=B”是“A⊆B”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.定义运算|$\begin{array}{l}a&c\\ b&d\end{array}}$|=ad-bc,则|$\begin{array}{l}i&2\\ 1&i\end{array}}$|(i是虚数单位)的值为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若向量$\overrightarrow{a}$=(4,3),$\overrightarrow{b}$=(-1,-2),则$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影为(  )
A.-2B.2C.-2$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

同步练习册答案