精英家教网 > 高中数学 > 题目详情
10.如图(1)所示,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=1,E、F、G分别为线段PC、PD、BC的中点,现将△PDC折起,使平面PDC⊥平面ABCD,如图(2).
(Ⅰ)求证:AP∥平面EFG;
(Ⅱ)求证:平面PAD⊥平面EFG;
(Ⅲ)求三棱锥C-EFG的体积.

分析 (Ⅰ)由条件可得EF∥CD∥AB,利用直线和平面平行的判定定理证得EF∥平面PAB.同理可证,EG∥平面PAB,可得平面EFG∥平面PAB.再利用两个平面平行的性质可得AP∥平面EFG.
(Ⅱ)证明EF⊥平面PAD,即可证明:平面PAD⊥平面EFG;
(Ⅲ)根据VC-EFG=VG-CEF=$\frac{1}{3}$•S△CEF•CG,运算求得结果.

解答 (Ⅰ)证明:∵E、F分别是PC、PD的中点,
∴EF∥CD∥AB,
又EF?平面PAB,AB?平面PAB,
∴EF∥平面PAB.
同理,EG∥平面PAB,
∵EF∩EG=E,
∴∴平面EFG∥平面PAB,
又AP?平面PAB,∴AP∥平面EFG…4分
(Ⅱ)证明:∵CD⊥PD,CD⊥AD,PD∩AD=D,
∴CD⊥平面PAD,
又E、F分别是PC、PD的中点的中点
∴EF∥CD,
∴EF⊥平面PAD,
又EF?平面EFG,
则平面PAD⊥平面EFG…8分
(3)解:${V_{C-EFG}}={V_{G-CEF}}=\frac{1}{3}{S_{△CEF}}.GC$=$\frac{1}{3}×\frac{1}{8}×\frac{1}{2}=\frac{1}{48}$…12分.

点评 本题主要考查直线和平面平行的判定定理、平面和平面垂直的判定定理的应用,用等体积法求棱锥的体积,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如表:
零件的个数x(个)2345
加工的时间y(小时)2.5344.5
(Ⅰ)在给定的坐标系中画出表中数据的散点图;两个变量y与x的回归模型中,分别选择了2个不同模型,模型①:$\stackrel{∧}{y}$=$\stackrel{∧}{b}x$+$\stackrel{∧}{a}$,模型②:$\stackrel{∧}{y}$=$\stackrel{∧}{c}$$\sqrt{x}$+$\stackrel{∧}{d}$,求$\stackrel{∧}{a}$,$\stackrel{∧}{b}$,$\stackrel{∧}{c}$,$\stackrel{∧}{d}$(精确到0.1);
(Ⅱ)比较两个不同的模型的相关指数R12,R22,指出哪种模型的拟合效果最好,并说明理由.
附:回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b\overline{x}}$,其中$\overline{x}$,$\overline{y}$为样本平均数,令z=$\sqrt{x}$,则$\sum_{i=1}^{4}$ziyi=26.8,$\overline{z}$=1.8,$\sqrt{2}$≈1.4,$\sqrt{3}$≈1.7,$\sqrt{5}$≈2.2,R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-{\stackrel{∧}{y}}_{i})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在平面直角坐标系xOy中,向量$\overrightarrow{OA}$=(1,2),$\overrightarrow{OB}$=(2,m),若O,A,B三点能构成三角形,则(  )
A.m=4B.m≠4C.m≠-1D.m∈R

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{2}{x}$+3lnax-x,g(x)=xex+cosx(a≠0).
(Ⅰ)求函数y=f(x)的单调区间;
(Ⅱ)若?x1∈[1,2],x2∈[0,3],使得f($\begin{array}{l}{x_1}\end{array}$)>g(x2)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在梯形ABCD中,∠ABC=$\frac{2π}{3}$,AD∥BC,BC=2AD=2AB=4,将梯形ABCD绕BC所在的直线旋转一周而形成的曲面所围成的几何体的体积为8π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知△ABC的内角A,B,C的对边分别为a,b,c,且b=acosc+$\frac{{\sqrt{3}}}{3}$csinA.
(Ⅰ)求角A的大小;
(Ⅱ)当a=3时,求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.(x-y)2(x+y)7的展开式中x3y6的系数为0(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知f(x)=$\left\{\begin{array}{l}{{e}^{x-1},x<2}\\{lo{g}_{3}({x}^{2}-1),x≥2}\end{array}\right.$,则f(f(2))的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某市汽车牌照号码构成是:前两位为英文字母,后三位数字,如DE668,其中牌照号码最后一个数字为8的牌照号码共有(  )
A.(C${\;}_{26}^{1}$)2A${\;}_{10}^{2}$B.A${\;}_{26}^{2}$A${\;}_{10}^{2}$C.(C${\;}_{26}^{1}$)2102D.A${\;}_{26}^{2}$102

查看答案和解析>>

同步练习册答案