精英家教网 > 高中数学 > 题目详情
1.在平面直角坐标系xOy中,向量$\overrightarrow{OA}$=(1,2),$\overrightarrow{OB}$=(2,m),若O,A,B三点能构成三角形,则(  )
A.m=4B.m≠4C.m≠-1D.m∈R

分析 若O,A,B三点能构成三角形则等价为O,A,B三点能不共线,先求出三点共线的等价条件进行求解即可.

解答 解:若O,A,B三点能构成三角形,
则O,A,B三点能不共线,
若O,A,B三点共线,则$\overrightarrow{OA}$∥$\overrightarrow{OB}$,
则$\frac{2}{1}=\frac{m}{2}$,即m=4,
即当m≠4时,O,A,B三点能构成三角形,
故选:B.

点评 本题主要考查向量共线的应用,根据条件建立方程关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知正四棱锥S-ABCD侧棱长为4,∠ASB=30°,过点A作截面与侧棱SB、SC、SD分别交于E、F、G,则截面AEFG周长的最小值是4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若点P在线段P1P2的延长线上,P1(4,-3),P2(-2,6),且|$\overrightarrow{{P}_{1}P}$|=4|$\overrightarrow{P{P}_{2}}$|,则点P的坐标为(-4,9).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若a=50.2,b=logπ3,c=log50.2,则(  )
A.b>c>aB.b>a>cC.a>b>cD.c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知某品牌手机公司生产某款手机的年固定成本为40万美元,每生产1万部还需另投入16万美元.设公司一年内共生产该款手机x万部并全部销售完,每万部的销售收入为R(x)万美元,且R(x)=$\left\{{\begin{array}{l}{400-6x,0<x≤40}\\{\frac{8000}{x}-\frac{57600}{x^2},x>40}\end{array}}\right.$.
(Ⅰ)写出年利润f(x)(万美元)关于年产量x(万部)的函数解析式;
(Ⅱ)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知α,β是锐角,tanα,tanβ是方程x2-5x+6=0的两根,则α+β的值为$\frac{3π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是π,且当x∈(0,$\frac{π}{2}$),f(x)=sinx,则f($\frac{800π}{3}$)=(  )
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图(1)所示,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=1,E、F、G分别为线段PC、PD、BC的中点,现将△PDC折起,使平面PDC⊥平面ABCD,如图(2).
(Ⅰ)求证:AP∥平面EFG;
(Ⅱ)求证:平面PAD⊥平面EFG;
(Ⅲ)求三棱锥C-EFG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.定义运算|$\begin{array}{l}a&c\\ b&d\end{array}}$|=ad-bc,则|$\begin{array}{l}i&2\\ 1&i\end{array}}$|(i是虚数单位)的值为-3.

查看答案和解析>>

同步练习册答案