精英家教网 > 高中数学 > 题目详情
17.如果执行如图所示的框图,输入N=5,则输出的S等于(  )
A.$\frac{5}{4}$B.$\frac{4}{5}$C.$\frac{6}{5}$D.$\frac{5}{6}$

分析 由已知中的程序框图可知,该程序的功能是计算出输出S=$\frac{1}{1×2}+\frac{1}{2×3}+\frac{1}{3×4}+\frac{1}{4×5}+\frac{1}{5×6}$的值.

解答 解:n=5时,k=1,S=0,
第一次运行:S=0+$\frac{1}{1×2}$=$\frac{1}{2}$,k=1<5,
第二次运行:k=1+1=2,S=$\frac{1}{2}+\frac{1}{2×3}$=$\frac{2}{3}$,k=2<5,
第三次运行:k=2+1=3,$S=\frac{2}{3}+\frac{1}{3×4}$=$\frac{3}{4}$,k=3<5,
第四次运行:k=3+1=4,S=$\frac{3}{4}+\frac{1}{4×5}$=$\frac{4}{5}$,k=4<5,
第五次运行:k=4+1=5,S=$\frac{4}{5}+\frac{1}{5×6}$=$\frac{5}{6}$,k=5,
结束运行,输出S=$\frac{5}{6}$.
故选:D.

点评 本题考查程序框图的应用,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.(用空间向量坐标表示解答)已知正三棱柱ABC-A1B1C1的各棱长都是4,E是BC的中点,F在CC1上,且CF=1.
(1)求证:EF⊥A1C;
(2)求二面角C-AF-E的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.几何体的三视图如图所示,该几何体的体积为(  )
A.B.$\frac{16}{3}$πC.$\frac{20}{3}$πD.4+$\frac{4}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若函数f(x)=ax3+b(a,b∈R)是R上的奇函数,则  (  )
A.a∈R,b=0B.a∈R,b=1C.a=0,b∈RD.a=1,b∈R

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若点P在线段P1P2的延长线上,P1(4,-3),P2(-2,6),且|$\overrightarrow{{P}_{1}P}$|=4|$\overrightarrow{P{P}_{2}}$|,则点P的坐标为(-4,9).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.从7本不同的书中选出4本,分别发给4名学生,每人一本.已知其中A、B两本书不能发给学生丙,则不同的分配方法有(  )
A.720B.600C.480D.360

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若a=50.2,b=logπ3,c=log50.2,则(  )
A.b>c>aB.b>a>cC.a>b>cD.c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知α,β是锐角,tanα,tanβ是方程x2-5x+6=0的两根,则α+β的值为$\frac{3π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知从某批产品中随机抽取1件是二等品的概率为0.2.
(1)若从该产品中有放回地抽取产品2次,每次抽取1件,设事件A:“取出的2件产品中至多有1件是二等品”,求P(A);
(2)若该批产品共有20件,从中任意抽取2件,X表示取出的2件产品中二等品的件数,求随机变量X的分布列和数学期望.

查看答案和解析>>

同步练习册答案