精英家教网 > 高中数学 > 题目详情
18.已知一个几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{2\sqrt{3}}{3}$B.$\frac{4\sqrt{3}}{3}$C.$\sqrt{3}$D.2$\sqrt{3}$

分析 由三视图可知:该几何体是一个四棱锥,其中侧面是正三角形,底面ABCD是正方形,且底面ABCD⊥侧面PAB.利用体积计算公式即可得出.

解答 解:由三视图可知:该几何体是一个四棱锥,其中侧面是正三角形,底面ABCD是正方形,且底面ABCD⊥侧面PAB.
∴该几何体的体积V=$\frac{1}{3}×{2}^{2}×\sqrt{3}$=$\frac{4\sqrt{3}}{3}$.
故选;B.

点评 本题考查了三视图的有关计算、四棱锥的体积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.某中学举办电脑知识竞赛,满分为100分,80分以上为优秀(含80分),现将高一两个班参赛学生的成绩进行整理后分成5组;第一组[50,60),第二组[60,70),第三组[70,80),第四组[80,90),第五组[90,100],其中第一、三、四、五小组的频率分别为0.30、0.15、0.10、0.05,而第二小组的频数是40,则参赛的人数以及成绩优秀的概率分别是(  )
A.50,0.15B.50,0.75C.100,0.15D.100,0.75

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.我国南北朝数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数x的不足近似值和过剩近似值分别为$\frac{b}{a}$和$\frac{d}{c}$(a,b,c,d∈N*),则$\frac{b+d}{a+c}$是x的更为精确的不足近似值或过剩近似值.我们知道π=3.14159…,若令$\frac{31}{10}$<π<$\frac{49}{15}$,则第一次用“调日法”后得$\frac{16}{5}$是π的更为精确的过剩近似值,即$\frac{31}{10}$<π<$\frac{16}{5}$,若每次都取最简分数,那么第四次用“调日法”后可得π的近似分数为(  )
A.$\frac{22}{7}$B.$\frac{63}{20}$C.$\frac{78}{25}$D.$\frac{109}{35}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.我国南北朝数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数x的不足近似值和过剩近似值分别为$\frac{b}{a}$和$\frac{d}{c}$(a,b,c,d∈N*),则$\frac{b+d}{a+c}$是x的更为精确的不足近似值或过剩近似值,我们知道π=3.14159…,若令$\frac{31}{10}<π<\frac{49}{15}$,则第一次用“调日法”后得$\frac{16}{5}$是π的更为精确的过剩近似值,即$\frac{31}{10}<π<\frac{16}{5}$,若每次都取最简分数,那么第三次用“调日法”后可得π的近似分数为(  )
A.$\frac{22}{7}$B.$\frac{63}{20}$C.$\frac{78}{25}$D.$\frac{109}{35}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,棱长为3的正方体的顶点A在平面α上,三条棱AB,AC,AD都在平面α的同侧,若顶点B,C到平面α的距离分别为1,$\sqrt{2}$,则顶点D到平面α的距离是$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某几何体的三视图如图所示,则该几何体的体积是(  )
A.32B.16C.$\frac{32}{3}$D.$\frac{16}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=log2|x|-1.若a=f(-4),b=f(2sinθ),c=2f(sinθ),θ≠$\frac{kπ}{2}$,k∈Z,则a,b,c的大小关系为(  )
A.a>b>cB.c>b>aC.a>c>bD.b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某三棱锥的三视图如图所示,则该三棱锥的四个面中,最大的面积是(  )
A.$\frac{{3\sqrt{5}}}{2}$B.$3\sqrt{6}$C.$2\sqrt{3}$D.$\frac{{5\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,正方形ABCD的边长为1,$\widehat{CE}$所对的圆心角∠CDE=90°,将图形ABCE绕AE所在直线旋转一周,形成的几何体的表面积为5π.

查看答案和解析>>

同步练习册答案