精英家教网 > 高中数学 > 题目详情
6.我国南北朝数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数x的不足近似值和过剩近似值分别为$\frac{b}{a}$和$\frac{d}{c}$(a,b,c,d∈N*),则$\frac{b+d}{a+c}$是x的更为精确的不足近似值或过剩近似值,我们知道π=3.14159…,若令$\frac{31}{10}<π<\frac{49}{15}$,则第一次用“调日法”后得$\frac{16}{5}$是π的更为精确的过剩近似值,即$\frac{31}{10}<π<\frac{16}{5}$,若每次都取最简分数,那么第三次用“调日法”后可得π的近似分数为(  )
A.$\frac{22}{7}$B.$\frac{63}{20}$C.$\frac{78}{25}$D.$\frac{109}{35}$

分析 利用“调日法”进行计算,即可得出结论.

解答 解:由调日法运算方法可知,
第一次用“调日法”后得$\frac{16}{5}$是π的更为精确的过剩近似值,即$\frac{31}{10}<π<\frac{16}{5}$,
第二次用调日法后得$\frac{47}{15}$是π更为精确的不足近似值,即$\frac{47}{15}<π<\frac{16}{5}$,
第三次用调日法后得$\frac{63}{20}$是π更为精确的过剩近似值,即$\frac{47}{15}<π<\frac{63}{20}$,
故第三次调日法后得到$\frac{63}{20}$为π的近似分数.
故选B.

点评 本题考查“调日法”,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.终边落在第二象限的角组成的集合为(  )
A.{α|kπ<α<$\frac{π}{2}$+kπ,k∈Z}B.{α|$\frac{π}{2}$+kπ<α<π+kπ,k∈Z}
C.{α|2kπ<α<$\frac{π}{2}$+2kπ,k∈Z}D.{α|$\frac{π}{2}$+2kπ<α<π+2kπ,k∈Z}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.用反证法证明命题:“若a,b,c为不全相等的实数,且a+b+c=0,则a,b,c至少有一个负数”,假设原命题不成立的内容是(  )
A.a,b,c都大于0B.a,b,c都是非负数
C.a,b,c至多两个负数D.a,b,c至多一个负数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知f(x)是定义域为R的奇函数,且在(0,+∞)内有1003个零点,则f(x)的零点的个数为2007.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.四棱柱ABCD-A1B1C1D1的底面ABCD为矩形,AB=2,AD=4,AA1=6,∠A1AB=∠A1AD=60°,则AC1的长为(  )
A.$8\sqrt{2}$B.46C.$2\sqrt{23}$D.32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知正四棱柱ABCD-A1B1C1D1中,底面边长AB=2,侧棱BB1的长为4,过点B作B1C的垂线交侧棱CC1于点E,交B1C于点F.
(Ⅰ)求证:A1C⊥平面BED;
(Ⅱ)求A1B与平面BDE所成角的正弦值;
(Ⅲ)求二面角D-BE-A1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知一个几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{2\sqrt{3}}{3}$B.$\frac{4\sqrt{3}}{3}$C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在如图所示的几何体中,△ABC为正三角形,AE和CD都垂直于平面ABC,且AE=AB=2,CD=1,F在线段BE上.
(1)求证:平面DBE⊥平面ABE;
(2)若二面角B-DA-F的余弦值为$\frac{\sqrt{10}}{4}$,求BF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若实数x,y满足$\frac{{x}^{2}}{4}$+y2=x,则x2+y2有最大值16.

查看答案和解析>>

同步练习册答案