精英家教网 > 高中数学 > 题目详情
11.如图,已知正四棱柱ABCD-A1B1C1D1中,底面边长AB=2,侧棱BB1的长为4,过点B作B1C的垂线交侧棱CC1于点E,交B1C于点F.
(Ⅰ)求证:A1C⊥平面BED;
(Ⅱ)求A1B与平面BDE所成角的正弦值;
(Ⅲ)求二面角D-BE-A1的余弦值.

分析 (Ⅰ)以D为原点,DA、DC、DD1所在直线分别为x、y、z轴,建立空间直角坐标系D-xyz,利用向量法能证明A1C⊥平面BED.
(Ⅱ)求出平面BDE的一个法向量和$\overrightarrow{{A}_{1}B}$,利用向量法能求出A1B与平面BDE所成角的正弦值.
(Ⅲ)求出平面A1BE的法向量和平面BDE的一个法向量,利用向量法能求出二面角D-BE-A1的余弦值.

解答 证明:(Ⅰ)如图,以D为原点,DA、DC、DD1所在直线分别为x、y、z轴
建立空间直角坐标系D-xyz,
D(0,0,0),A(2,0,0),B(2,2,0),C(0,2,0),
A1(2,0,4),B1(2,2,4),C1(0,2,4),D1(0,0,4),
设E(0,2,t),则$\overrightarrow{BE}$=(-2,0,t),$\overrightarrow{{B}_{1}C}$=(-2,0,-4).
∵BE⊥B1C,
∴$\overrightarrow{BE}•\overrightarrow{{B}_{1}C}$=4-4t=0.解得t=1,
∴E(0,2,1),且$\overrightarrow{BE}$=(-2,0,1).
又∵$\overrightarrow{{A}_{1}C}$=(-2,2,-4),$\overrightarrow{DB}$=(2,2,0),
∴$\overrightarrow{{A}_{1}C}•\overrightarrow{BE}=0$,且$\overrightarrow{{A}_{1}C}•\overrightarrow{DB}$=0,
∴A1C⊥BE,A1C⊥DB.
∵BD、BE是平面BDE内的相交直线.
∴A1C⊥平面BED.
解:(Ⅱ)由(Ⅰ)所建的坐标系,得$\overrightarrow{{A}_{1}C}$=(-2,2,-4)是平面BDE的一个法向量,
又∵$\overrightarrow{{A}_{1}B}$=(0,2,-4),
∴cos<$\overrightarrow{{A}_{1}C}$,$\overrightarrow{{A}_{1}B}$>=$\frac{\overrightarrow{{A}_{1}C}•\overrightarrow{{A}_{1}B}}{|\overrightarrow{{A}_{1}C}|•|\overrightarrow{{A}_{1}B}|}$=$\frac{20}{\sqrt{24}•\sqrt{20}}$=$\frac{\sqrt{30}}{6}$,
∴A1B与平面BDE所成角的正弦值为$\frac{\sqrt{30}}{6}$.
(Ⅲ)∵$\overrightarrow{{A_1}B}=({0,2,-4})$,$\overrightarrow{BE}$=(-2,0,1).
设平面A1BE的法向量为$\overrightarrow m=({x,y,z})$,
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{{A}_{1}B}=2y-4z=0}\\{\overrightarrow{m}•\overrightarrow{BE}=-2x+z=0}\end{array}\right.$,取x=1,得$\overrightarrow m$=(1,4,2),
又$\overrightarrow{{A}_{1}C}$=(-2,2,-4)是平面BDE的一个法向量,
∴$cos\left?{\overrightarrow m,\overrightarrow{{A_1}C}}\right>=\frac{{\overrightarrow m•\overrightarrow{{A_1}C}}}{{|{\overrightarrow m}||{\overrightarrow{{A_1}C}}|}}=\frac{-2}{{\sqrt{21}\sqrt{24}}}=-\frac{{\sqrt{14}}}{42}$,
由图可知,所求二面角为锐二面角,
∴二面角D-BE-A1的余弦值为$\frac{{\sqrt{14}}}{42}$.

点评 本题给出正四棱柱,求证线面垂直并求直线与平面所成角的正弦值,着重考查了利用空间向量研究线面垂直、用空间向量的夹角公式求直线与平面所成角等知识,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.如图所示,在正方形ABCD中,点E为边AB的中点,线段AC与DE交于点P,则tan∠APD=-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某几何体的三视图如图所示,则该几何体的体积为16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,己知三棱锥P-ABC,底面是边长为2的正三角形,平面PAB⊥平面ABC,PA=PB=$\sqrt{2}$,D为BC中点.
(Ⅰ)求证:AB⊥PC;
(Ⅱ)求点B到平面PAD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.我国南北朝数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数x的不足近似值和过剩近似值分别为$\frac{b}{a}$和$\frac{d}{c}$(a,b,c,d∈N*),则$\frac{b+d}{a+c}$是x的更为精确的不足近似值或过剩近似值,我们知道π=3.14159…,若令$\frac{31}{10}<π<\frac{49}{15}$,则第一次用“调日法”后得$\frac{16}{5}$是π的更为精确的过剩近似值,即$\frac{31}{10}<π<\frac{16}{5}$,若每次都取最简分数,那么第三次用“调日法”后可得π的近似分数为(  )
A.$\frac{22}{7}$B.$\frac{63}{20}$C.$\frac{78}{25}$D.$\frac{109}{35}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某几何体的三视图如图所示,则该几何体的体积等于$\frac{16}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某几何体的三视图如图所示,则该几何体的体积是(  )
A.32B.16C.$\frac{32}{3}$D.$\frac{16}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,四棱锥P-ABCD的底面是直角梯形,AD∥BC,∠ADC=90°,AD=2BC,PA⊥平面ABCD,E为线段PA的中点.
(Ⅰ)求证:BE∥平面PCD;
(Ⅱ)若PA=AD=2,求点E到平面PCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知二次函数y=2x2+3mx+2m.
(1)求函数y的最小值t;
(2)当m为何值时,t取得最大值.

查看答案和解析>>

同步练习册答案