精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=tan(x-π)sin(x+$\frac{3π}{2}$)sin(x-3π)+cos(x-$\frac{3π}{2}$)+2.
(I)化简f(x);
(Ⅱ)若方程f(x)=m在x∈[-$\frac{π}{6}$,$\frac{π}{2}$]上有两个不相等的实数根,求实数m的取值范围.

分析 (Ⅰ)由已知条件利用诱导公式能求出f(x).
(Ⅱ)由sin2x-sinx+2-m=0在x∈[-$\frac{π}{6}$,$\frac{π}{2}$]上有两个不相等的实数根,利用根的判别式得到△>0,从而得m>$\frac{7}{4}$.由sinx∈[-$\frac{1}{2}$,1],(sinx-$\frac{1}{2}$)2=m-$\frac{7}{4}$,得m≤2,由此能求出实数m的取值范围.

解答 解:(Ⅰ)f(x)=tan(x-π)sin(x+$\frac{3π}{2}$)sin(x-3π)+cos(x-$\frac{3π}{2}$)+2
=tanx(-cosx)(-sinx)+(-sinx)+2
=sin2x-sinx+2.
(Ⅱ)∵方程f(x)=m在x∈[-$\frac{π}{6}$,$\frac{π}{2}$]上有两个不相等的实数根,
∴sin2x-sinx+2-m=0在x∈[-$\frac{π}{6}$,$\frac{π}{2}$]上有两个不相等的实数根,
∵x∈[-$\frac{π}{6}$,$\frac{π}{2}$],∴△=1-4(2-m)>0,解得m>$\frac{7}{4}$.
∴sinx∈[-$\frac{1}{2}$,1],又∵sin2x-sinx+2-m=0,
∴(sinx-$\frac{1}{2}$)2=m-$\frac{7}{4}$,
∵sinx∈[-$\frac{1}{2}$,1],∴直线y=m-$\frac{7}{4}$与抛物线y=(sinx-$\frac{1}{2}$)2在sinx∈[-$\frac{1}{2}$,1]上有两个交点,
∴m-$\frac{7}{4}$≤$\frac{1}{4}$,解得m≤2,
∴实数m的取值范围是($\frac{7}{4}$,2].

点评 本题考查函数式的化简求值,考查满足条件的实数值的求法,是中档题,解题时要认真审题,注意三角函数诱导公式和配方法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.设等差数列{an}的前n项和为Sn,a1=1,S5=45.
(1)求数列{an}的通项公式an
(2)设数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在数列{an}中,Sn为{an}的前n项和,a1=1且Sn+n2=n(an+1).
(1)求数列{an}的通项公式;
(2)令bn=$\frac{{a}_{n}+1}{2}$•3n-1,Bn为数列{bn}的前n项和,求Bn
(3)若数列{cn}满足cn=$\frac{2{b}_{n}}{n}$+(-1)nln$\frac{2{b}_{n}}{n}$,求数列{cn}的前n项和Cn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an},且2a1+2a2+3a3+…+nan=3n,则数列{an}的通项公式为${a}_{n}=\left\{\begin{array}{l}{\frac{3}{2},n=1}\\{\frac{2}{n}×{3}^{n-1},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.条件P:|x-4|>1,条件Q:$\frac{1}{3-x}$>1,则¬P是¬Q的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知两点A($\sqrt{2}$,0),B(-$\sqrt{2}$,0),点P为平面内一动点,过点p作y轴的垂线,垂足为Q,且$\overrightarrow{PA}•\overrightarrow{PB}=2\overrightarrow{P{Q}^{2}}$,则动点P的轨迹方程是x2-y2=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知两个非零平面向量$\overrightarrow{a}$,$\overrightarrow{b}$满足:对任意的实数λ都有|$\overrightarrow{a}$+λ$\overrightarrow{b}$|≥|$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$|
(1)若|$\overrightarrow{b}$|=2,求$\overrightarrow{a}$•$\overrightarrow{b}$的值;
(2)若$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{6}$,求$\frac{|2\overrightarrow{a}-t\overrightarrow{b}|}{|\overrightarrow{b}|}$(t∈R)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.讨论关于x的方程4x-2x+1-b=0(b∈R)的实根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求函数y=$\sqrt{\frac{1}{2}cosx}$的定义域.

查看答案和解析>>

同步练习册答案