精英家教网 > 高中数学 > 题目详情
(本小题满分12分)如图5,已知椭圆的离心率为,其右焦点F是圆的圆心。
(1)求椭圆方程;
(2)过所求椭圆上的动点P作圆的两条切线分别交轴于两点,当时,求此时点P的坐标。
(1)椭圆方程为(2)的坐标是
(1)因为圆的圆心是
所以椭圆的右焦点为
椭圆的离心率是
,所以椭圆方程为。……………………4分
(2)设

(舍),
.……………………5分
直线的方程:
化简得
又圆心到直线的距离为

化简得:,……………………7分
同理:
……………………9分

在椭圆上
,……………………11分
(舍)或
所以,此时点的坐标是.……………………12分.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知椭圆的两焦点为,离心率
(1)求此椭圆的方程;
(2)设直线,若与此椭圆相交于P、Q两点,且等于椭圆的短轴长,求m的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(14分)已知方向向量的直线l 过点()和椭圆C:的焦点,且椭圆的中心关于直线l的对称点在椭圆C的右准线上。

(1)求椭圆C的方程;
(2)是否存在过点E(-2,0)的直线m交椭圆C于M、N,满足(O为原点),若存在求出直线的方程,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆方程为,它的一个顶点为,离心率
(1)求椭圆的方程;
(2)设直线与椭圆交于AB两点,坐标原点O到直线l的距离为,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(本题满分13分)
设椭圆的左、右焦点分别为F1与F2,直线过椭圆的一个焦点F2且与椭圆交于P、Q两点,若的周长为
(1)求椭圆C的方程;
(2)设椭圆C经过伸缩变换变成曲线,直线与曲线相切且与椭圆C交于不同的两点A、B,若,求面积的取值范围。(O为坐标原点)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知椭圆的方程是,椭圆的左顶点为,离心率,倾斜角为的直线与椭圆交于两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设向量),若点在椭圆上,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若点是直线被椭圆所截得的线段的中点,则的方程是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆C:的右焦点为F,右准线为l,点,线段AF交椭圆C于点B,若="                                                                                                                           " (   )
A.B.2C.D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是以,为焦点的椭圆上的一点,若,,则此椭圆的离心率为____________.

查看答案和解析>>

同步练习册答案