精英家教网 > 高中数学 > 题目详情

(本题满分13分)
设椭圆的左、右焦点分别为F1与F2,直线过椭圆的一个焦点F2且与椭圆交于P、Q两点,若的周长为
(1)求椭圆C的方程;
(2)设椭圆C经过伸缩变换变成曲线,直线与曲线相切且与椭圆C交于不同的两点A、B,若,求面积的取值范围。(O为坐标原点)
,
(1)依题意轴交于点F2(1,0)
    (1分)

所以


所以椭圆C的方程为  (4分)
(2)依题意曲线的方程为
即圆  (5分)
因为直线与曲线相切,
所以
        (6分)



所以
所以          (7分)
所以    (8分)
所以


所以  (9分)
所以

所以
所以  (10分)


因为,所以

上为递增函数,
所以  (12分)
又O到AB的距离为1,
所以
的面积的取值范围为   (13分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
设椭圆的两个焦点是,且椭圆上存在点M,使
(1)求实数m的取值范围;
(2)若直线与椭圆存在一个公共点E,使得|EF|+|EF|取得最小值,求此最小值及此时椭圆的方程;
(3)在条件(2)下的椭圆方程,是否存在斜率为的直线,与椭圆交于不同的两A,B,满足,且使得过点两点的直线NQ满足=0?若存在,求出k的取值范围;若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图5,已知椭圆的离心率为,其右焦点F是圆的圆心。
(1)求椭圆方程;
(2)过所求椭圆上的动点P作圆的两条切线分别交轴于两点,当时,求此时点P的坐标。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(本题满分14分)已知直角坐标平面内点到点与点的距离之和为
(Ⅰ)试求点的轨迹的方程;
(Ⅱ)若斜率为的直线与轨迹交于两点,点为轨迹上一点,记直线的斜率为,直线的斜率为,试问:是否为定值?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分18分,其中第1小题6分,第2小题4分,第3小题8分)
定义变换可把平面直角坐标系上的点变换到这一平面上的点.特别地,若曲线上一点经变换公式变换后得到的点与点重合,则称点是曲线在变换下的不动点.
(1)若椭圆的中心为坐标原点,焦点在轴上,且焦距为,长轴顶点和短轴顶点间的距离为2. 求该椭圆的标准方程. 并求出当时,其两个焦点经变换公式变换后得到的点的坐标;
(2)当时,求(1)中的椭圆在变换下的所有不动点的坐标;
(3)试探究:中心为坐标原点、对称轴为坐标轴的双曲线在变换
)下的不动点的存在情况和个数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点B为椭圆+=1的左准线与轴的交点,若线段AB的中点C在椭圆上,则该椭圆的离心率为       
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知动点P(x,y)在椭圆上,若F(3,0),,且M为PF中点,则=_____.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

16.在△ABC中,∠A=15°,∠B=105°,若以AB为焦点的椭圆经过点C.则该椭圆的离心率          

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,已知椭圆的左、右准线分别为l1l2,且分别交x轴于CD两点,从l1上一点A发出一条光线经过椭圆的左焦点Fx轴反射后与l2交于点B,若,且,则椭圆的离心率等于_____________.

查看答案和解析>>

同步练习册答案