精英家教网 > 高中数学 > 题目详情

设f(x)是定义在R上的偶函数,且f(2+x)=f(2﹣x),当x∈[﹣2,0)时,f(x)=﹣1,若在区间(﹣2,6)内的关于x的方程f(x)﹣logga(x+2)=0(a>0且a≠1)恰有4个不同的实数根,则实数a的取值范围是(  )

 

A.

,1)

B.

(1,4)

C.

(1,8)

D.

(8,+∞)

考点:

根的存在性及根的个数判断.

专题:

计算题;作图题;函数的性质及应用.

分析:

在同一直角坐标系中作出f(x)与h(x)=loga(x+2)在区间(﹣2,6)内的图象,结合题意可得到关于a的关系式,从而得到答案.

解答:

解:∵当x∈[﹣2,0)时,f(x)=﹣1,

∴当x∈(0,2]时,﹣x∈[﹣2,0),

∴f(﹣x)=﹣1=﹣1,又f(x)是定义在R上的偶函数,

∴f(x)=﹣1(0<x≤2),又f(2+x)=f(2﹣x),

∴f(x)的图象关于直线x=2对称,且f(4+x)=f(﹣x)=f(x),

∴f(x)是以4为周期的函数,

∵在区间(﹣2,6)内的关于x的方程f(x)﹣loga(x+2)=0(a>0且a≠1)恰有4个不同的实数根,

令h(x)=loga(x+2),即f(x)=h(x)=loga(x+2)在区间(﹣2,6)内有有4个交点,

在同一直角坐标系中作出f(x)与h(x)=loga(x+2)在区间(﹣2,6)内的图象,

∴0<loga(6+2)<1,

∴a>8.

故选D.

点评:

本题考查根的存在性及根的个数判断,求得f(x)的解析式,作出f(x)与h(x)=loga(x+2)在区间(﹣2,6)内的图象是关键,考查作图能力与数形结合的思想,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

3、设f(x)是定义在R上的奇函数,且f(3)+f(-2)=2,则f(2)-f(3)=
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的偶函数,当x≥0时,f(x)=2x+2x-1,则f(-1)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数,且f(1)=0,当x>0时,有f(x)>xf′(x)恒成立,则不等式xf(x)>0的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数,且y=f(x)满足f(1-x)=f(x),且f( 
1
2
 )=2
,则f(1)+f(
3
2
)+f(2)+f(
5
2
)+f(3)+f(
7
2
)
=
-2
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2+a(a是常数).则x∈[2,4]时的解析式为(  )
A、f(x)=-x2+6x-8B、f(x)=x2-10x+24C、f(x)=x2-6x+8D、f(x)=x2-6x+8+a

查看答案和解析>>

同步练习册答案