【题目】已知椭圆C:
的左、右焦点分别为
,
,离心率为
,点
在椭圆C上,且
⊥![]()
,△F1MF2的面积为
.
(1)求椭圆C的标准方程;
(2)已知直线l与椭圆C交于A,B两点,
,若直线l始终与圆
相切,求半径r的值.
【答案】(1)
.(2)
.
【解析】
(1)由椭圆离心率为
,点M在椭圆C上,且MF2⊥F1F2,△F1MF2的面积为
,列出方程组求出a,b,由此能求出椭圆C的方程.
(2)设直线l的方程为y=kx+m,代入椭圆方程式,得(4k2+1)x2+8kmx+4m2﹣4=0,由此利用韦达定理、根的判别式、点到直线的距离公式能求出半径的r的值.
(1)设
,由题意得![]()
∴
,![]()
故椭圆C的方程为
.
(2)当直线l的斜率存在时,设其直线方程为
,设A(
,
),B(
,
),
联立方程组
,整理得
,
由方程的判别式△=64k2m2﹣4(4k2+1)(4m2﹣4)>0,
得
(1)
,
,由∠AOB=90°,得![]()
即![]()
而
,则![]()
∴![]()
整理得![]()
把
代入(1)得
.
而
,∴
,显然满足
,
直线l始终与圆
相切,得圆心(0,0)到直线l的距离d=r,
则
,
由
,得![]()
∵
,∴
.
当直线l的斜率不存在时,若直线l与圆
相切,此时直线l的方程为
.
∴![]()
综上所述:
.
科目:高中数学 来源: 题型:
【题目】为了比较两种治疗失眠症的药(分别成为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h)实验的观测结果如下:
服用A药的20位患者日平均增加的睡眠时间:
0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5
2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4
服用B药的20位患者日平均增加的睡眠时间:
3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4
1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5
![]()
(1)分别计算两组数据的平均数,从计算结果来看,哪种药的效果好?
(2)完成茎叶图,从茎叶图来看,哪种药疗效更好?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
在区间
上是增函数,
,对于命题“若
,则
”,有下列结论:
①此命题的逆命题为真命题;
②此命题的否命题为真命题;
③此命题的逆否命题为真命题;
④此命题的逆命题和否命题有且只有一个为真命题.
其中正确的结论的序号为______________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两位同学参加诗词大会,设甲、乙两人每道题答对的概率分别为
和
.假定甲、乙两位同学答题情况互不影响,且每人各次答题情况相互独立.
(1)用
表示甲同学连续三次答题中答对的次数,求随机变量
的分布列和数学期望;
(2)设
为事件“甲、乙两人分别连续答题三次,甲同学答对的次数比乙同学答对的次数恰好多2”,求事件
发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对关于
的方程
有近似解,必修一课本里研究过‘二分法’.现在结合导函数,介绍另一种方法‘牛顿切线法’.对曲线
,估计零点的值在
附近,然后持续实施如下‘牛顿切线法’的步骤:
在
处作曲线的切线,交
轴于点
;
在
处作曲线的切线,交
轴于点
;
在
处作曲线的切线,交
轴于点
;
得到一个数列
,它的各项就是方程
的近似解,按照数列的顺序越来越精确.请回答下列问题:
(1)求
的值;
(2)设
,求
的解析式(用
表示
);
(3)求该方程的近似解的这两种方法,‘牛顿切线法’和‘二分法’,哪一种更快?请给出你的判断和依据.(参照值:关于
的方程
有解
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com