精英家教网 > 高中数学 > 题目详情

【题目】已知函数在区间上是增函数,,对于命题“若,则”,有下列结论:

①此命题的逆命题为真命题;

②此命题的否命题为真命题;

③此命题的逆否命题为真命题;

④此命题的逆命题和否命题有且只有一个为真命题.

其中正确的结论的序号为______________.

【答案】①②③

【解析】

逆否命题与原命题真假相同,所以判断逆否命题的真假可以直接判断原命题的真假否命题与逆命题真假相同,所以判断否命题的真假可以直接判断逆命题的真假.

已知函数在区间上是增函数,

,若,则,故

同理可得,则即原命题为真命题,可得其逆否命题为真命题,③正确;

,则,故

同理可得,则即否命题为真命题,可得其等价命题逆命题为真命题,①②正确;由此得④不正确故答案为①②③.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】张三同学从每年生日时对自己的身高测量后记录如表:

附:回归直线的斜率和截距的最小二乘法估计公式分别为:

(1)求身高关于年龄的线性回归方程;(可能会用到的数据:(cm))

(2)利用(1)中的线性回归方程,分析张三同学岁起到岁身高的变化情况,如 岁之前都符合这一变化,请预测张三同学 岁时的身高

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数:

(I)时,求的最小值;

(II)对于任意的都存在唯一的使得,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:若两个椭圆的离心率相等,则称两个椭圆是相似的.如图,椭圆与椭圆是相似的两个椭圆,并且相交于上下两个顶点,椭圆的长轴长是4,椭圆长轴长是2,点分别是椭圆的左焦点与右焦点.

1)求椭圆的方程;

2)过的直线交椭圆于点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点,x轴的正半轴为极轴,以相同的长度单位建立极坐标系.己知直线的直角坐标方程为,曲线C的极坐标方程为

1)设t为参数,若,求直线的参数方程和曲线C的直角坐标方程;

2)已知:直线与曲线C交于AB两点,设,且依次成等比数列,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四面体SABC中若三条侧棱SASBSC两两互相垂直,且SA=1,SB=SC=,则四面体ABCD的外接球的表面积为( )

A.8πB.6πC.4πD.2π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的左、右焦点分别为,离心率为,点在椭圆C上,且F1MF2的面积为.

(1)求椭圆C的标准方程;

(2)已知直线l与椭圆C交于AB两点,,若直线l始终与圆相切,求半径r的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:极坐标与参数方程

在极坐标系下,已知圆O和直线

1求圆O和直线l的直角坐标方程;

2时,求直线l与圆O公共点的一个极坐标

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】湖北省第二届(荆州)园林博览会于2019928日至1128日在荆州园博园举办,本届园林博览会以“辉煌荆楚,生态园博”为主题,展示荆州生态之美,文化之韵,吸引更多优秀企业来荆投资,从而促进荆州经济快速发展.在此次博览会期间,某公司带来了一种智能设备供采购商洽谈采购,并决定大量投放荆州市场.已知该种设备年固定研发成本为50万元,每生产一台需另投入80元,设该公司一年内生产该设备万台且全部售完,每万台的销售收入(万元)与年产量(万台)满足如下关系式:.

(1)写出年利润(万元)关于年产量(万台)的函数解析式;(利润=销售收入-成本)

(2)当年产量为多少万台时,该公司获得的年利润最大?并求最大利润.

查看答案和解析>>

同步练习册答案