分析 (1)根据三角函数关系进行转化,结合正弦定理进行求解即可求c的值;
(2)根据余弦定理求出cosB,结合三角形的面积公式即可求△ABC的面积.
解答 解:(1)在△ABC中,由cosAsin(A+B)-sin2A=0得cosAsinC-2sinAcosA=0,
即cosA(sinC-2sinA)=0,
则cosA=0,或sinC=2sinA,
由cosA=0得A=$\frac{π}{2}$,
∵a=$\sqrt{6}$,b=4,
∴A<B,此时A=$\frac{π}{2}$不成立,
由sinC=2sinA,得c=2a=2$\sqrt{6}$;
(2)∵a=$\sqrt{6}$,b=4,c=2$\sqrt{6}$;
∴cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{6+24-16}{2\sqrt{6}×2\sqrt{6}}$=$\frac{7}{12}$,
则sinB=$\sqrt{1-(\frac{7}{12})^{2}}$=$\frac{\sqrt{95}}{12}$,
则△ABC的面积S=$\frac{1}{2}$bcsinB=$\frac{1}{2}$×$4×2\sqrt{6}$×$\frac{\sqrt{95}}{12}$=$\frac{\sqrt{570}}{3}$.
点评 本题主要考查解三角形的应用,根据正弦定理和余弦定理是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com