精英家教网 > 高中数学 > 题目详情
在△ABC中,设a、b、c分别是∠A、∠B、∠C所对的边长,且满足条件c=2,b=2a,则△ABC面积的最大值为( )
A.1
B.
C.
D.2
【答案】分析:先利用余弦定理求出cosC的值然后利用三角形面积公式可知S=a2sinC=a2,然后化简变形求出S的最大值,注意取最大值时a的值.
解答:解:由公式 c2=a2+b2-2abcosC 和b=2a c=2得
4=a2+4a2-4a2cosC
可推出 cosC==-
又由公式 S面积=absinC 和b=2a 得
S=a2sinC=a2
=
=
当a2=时,S面积取最大值
S面积最大值=此时a=
又 三角形三边 a+b>c,b-a<c
所以得 2>a>
所以a=
满足要求
所以S面积最大值=
故选C.
点评:本题主要考查了三角形中的几何计算,同时考查了余弦定理和二次函数的最值等有关基础知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,设a,b,c是角A,B,C所对的边,S是该三角形的面积,且4cosBsin2
B
2
+cos2B=0

(I)求角B的度数;
(II)若a=4,S=5
3
,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,设
a+b
c
=p,C=
π
3

(I)若sinA=
3
cosB
,求角B及实数p的值;
(II)求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,设a,b,c分别是三个内角A,B,C所对的边,且b2+c2-a2=bc,A=
π
3
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,设a,b,c分别是三个内角A,B,C所对的边,b=2,c=1,面积S△ABC=
1
2
,则内角A的大小为
π
6
6
π
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,设∠A,∠B,∠C的对边分别为a,b,c,已知3cosA-2sin2A=0,
(1)求∠A的大小;
(2)若a=
3
,b+c=3(b>c)
,求b,c的值.

查看答案和解析>>

同步练习册答案