精英家教网 > 高中数学 > 题目详情

【题目】在直三棱柱ABCA1B1C1中,平面ABC是下底面.MBB1上的点,AB3BC4AC5CC17,过三点AMC1作截面,当截面周长最小时,截面将三棱柱分成的上、下两部分的体积比为(

A.B.C.D.

【答案】D

【解析】

由题意画出图形,可得当截面周长最小时的BM值,再由已知可得AB平面BB1C1C,分别求出截面上下两部分的体积,作比即可得解.

AB3BC4AC5AB2+BC2AC2ABBCAB平面BB1C1C

将侧面BCC1B1折叠到平面ABB1A1内,如图,

连接BB1 的交点即为M,由相似可得BM3

设四棱锥ABCC1M的体积为V1,则

三棱柱ABCA1B1C1 的体积

∴当截面周长最小时,截面将三棱柱分成的上、下两部分的体积比为

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】天津市某中学为全面贯彻五育并举,立德树人的教育方针,促进学生各科平衡发展,提升学生综合素养.该校教务处要求各班针对薄弱学科生成立特色学科兴趣学习小组”(每位学生只能参加一个小组),以便课间学生进行相互帮扶.已知该校某班语文数学英语三个兴趣小组学生人数分别为101015.经过一段时间的学习,上学期期中考试中,他们的成绩有了明显进步.现采用分层抽样的方法从该班的语文,数学,英语三个兴趣小组中抽取7人,对期中考试这三科成绩及格情况进行调查.

1)应从语文,数学,英语三个兴趣小组中分别抽取多少人?

2)若抽取的7人中恰好有5人三科成绩全部及格,其余2人三科成绩不全及格.现从这7人中随机抽取4人做进一步的调查.

①记表示随机抽取4人中,语文,数学,英语三科成绩全及格的人数,求随机变量的分布列和数学期望;

②设为事件抽取的4人中,有人成绩不全及格,求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“柯西不等式”是由数学家柯西在研究数学分析中的“流数”问题时得到的,但从历史的角度讲,该不等式应当称为柯西﹣﹣布尼亚科夫斯基﹣﹣施瓦茨不等式,因为正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式推广到完善的地步,在高中数学选修教材4﹣5中给出了二维形式的柯西不等式:a2+b2)(c2+d2ac+bd2当且仅当adbc(即)时等号成立.该不等式在数学中证明不等式和求函数最值等方面都有广泛的应用.根据柯西不等式可知函数的最大值及取得最大值时x的值分别为(  )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】干支历法是上古文明的产物,又称节气历或中国阳历,是一部深奥的历法.它是用60组各不相同的天干地支标记年月日时的历法.具体的算法如下:先用年份的尾数查出天干,如20133为癸;再用2013年除以12余数为99为巳.那么2013年就是癸巳年了,

天干

4

5

6

7

8

9

0

1

2

3

地支

4

5

6

7

8

9

10

11

12

1

2

3

2020年高三应届毕业生李东是壬午年出生,李东的父亲比他大25岁.问李东的父亲是哪一年出生(

A.甲子B.乙丑C.丁巳D.丙卯

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和分别为,且,其中为常数.

1)若.

①求数列的通项公式;

②求数列的通项公式.

2)若.求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在极坐标系中曲线C的极坐标方程为

1)求曲线C与极轴所在直线围成图形的面积;

2)设曲线C与曲线ρsinθ1交于AB,求|AB|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年第十三届女排世界杯共12支参赛球队,比赛赛制釆取单循环方式,即每支球队进行11场比赛,最后靠积分选出最后冠军.积分规则如下(比赛采取53胜制):比赛中以3—03—1取胜的球队积3分,负队积0分;而在比赛中以3—2取胜的球队积2分,负队积1分.9轮过后,积分榜上的前2名分别为中国队和美国队,中国队积26分,美国队积22分.第10轮中国队对抗塞尔维亚队,设每局比赛中国队取胜的概率为

1)第10轮比赛中,记中国队3—1取胜的概率为,求的最大值点

2)以(1)中的作为的值.

i)在第10轮比赛中,中国队所得积分为,求的分布列;

)已知第10轮美国队积3分,判断中国队能否提前一轮夺得冠军(第10轮过后,无论最后一轮即第11轮结果如何,中国队积分最多)?若能,求出相应的概率;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,DABC中,边BC的中点,KACABD的外接圆O的交点,EK平行于AB且与圆O交于E,若AD=DE,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F(0,1)为平面上一点,H为直线ly=1上任意一点,过点H作直线l的垂线m,设线段FH的中垂线与直线m交于点P,记点P的轨迹为Γ.

1)求轨迹Γ的方程;

2)过点F作互相垂直的直线ABCD,其中直线AB与轨迹Γ交于点AB,直线CD与轨迹Γ交于点CD,设点MN分别是ABCD的中点.

①问直线MN是否恒过定点,如果经过定点,求出该定点,否则说明理由;

②求△FMN的面积的最小值.

查看答案和解析>>

同步练习册答案