精英家教网 > 高中数学 > 题目详情

【题目】干支历法是上古文明的产物,又称节气历或中国阳历,是一部深奥的历法.它是用60组各不相同的天干地支标记年月日时的历法.具体的算法如下:先用年份的尾数查出天干,如20133为癸;再用2013年除以12余数为99为巳.那么2013年就是癸巳年了,

天干

4

5

6

7

8

9

0

1

2

3

地支

4

5

6

7

8

9

10

11

12

1

2

3

2020年高三应届毕业生李东是壬午年出生,李东的父亲比他大25岁.问李东的父亲是哪一年出生(

A.甲子B.乙丑C.丁巳D.丙卯

【答案】C

【解析】

本题首先可以根据题意得出李东是2002年出生,然后根据李东的父亲比他大25岁得出李东的父亲为1977年出生,最后结合题目给出的表格即可得出结果.

因为由题意可知,“午”对应的是10,“壬”对应的是2

所以,李东是壬午年即2002年出生

因为李东的父亲比他大25

所以李东的父亲为1977年出生,

所以李东的父亲为丁巳年出生

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校为了有效地加强高中生自主管理能力,推出了一系列措施,其中自习课时间的自主管理作为重点项目,学校有关处室制定了高中生自习课时间自主管理方案”.现准备对该方案进行调查,并根据调查结果决定是否启用该方案,调查人员分别在各个年级随机抽取若干学生对该方案进行评分,并将评分分成七组,绘制成如图所示的频率分布直方图.

相关规则为①采用百分制评分,内认定为对该方案满意,不低于80分认定为对该方案非常满意,60分以下认定为对该方案不满意;②学生对方案的满意率不低于即可启用该方案;③用样本的频率代替概率.

1)从该校学生中随机抽取1人,求被抽取的这位同学非常满意该方案的概率,并根据频率分布直方图求学生对该方案评分的中位数.

2)根据所学统计知识,判断该校是否启用该方案,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求在点处的切线方程;

2)(i)若恒成立,求的取值范围;

i i)当时,证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中,,平面平面分别在线段上,且是等腰直角三角形.

1)若,求证:平面

2,是否存在,使得与平面所成的角的正弦值为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,共享单车在我国各城市迅猛发展,为人们的出行提供了便利,但也给城市的交通管理带来了一些困难,为掌握共享单车在省的发展情况,某调查机构从该省抽取了5个城市,并统计了共享单车的指标指标,数据如下表所示:

城市1

城市2

城市3

城市4

城市5

指标

2

4

5

6

8

指标

3

4

4

4

5

1)试求间的相关系数,并说明是否具有较强的线性相关关系(若,则认为具有较强的线性相关关系,否则认为没有较强的线性相关关系).

2)建立关于的回归方程,并预测当指标为7时,指标的估计值.

3)若某城市的共享单车指标在区间的右侧,则认为该城市共享单车数量过多,对城市的交通管理有较大的影响交通管理部门将进行治理,直至指标在区间内现已知省某城市共享单车的指标为13,则该城市的交通管理部门是否需要进行治理?试说明理由.

参考公式:回归直线中斜率和截距的最小二乘估计分别为

,,相关系数

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在全面建成小康社会的决胜阶段,让贫困地区同全国人民共同进入全面小康社会是我们党的庄严承诺.在“脱真贫、真脱贫”的过程中,精准扶贫助推社会公平显得尤其重要.若某农村地区有200户贫困户,经过一年扶贫后,对该地区的“精准扶贫”的成效检查验收.从这200户贫困户中随机抽出50户,对各户的人均年收入(单位:千元)进行调查得到如下频数表:

人均年收入

频数

2

3

10

20

10

5

若人均年收入在4000元以下的判定为贫困户,人均年收入在4000元~8000元的判定为脱贫户,人均年收入达到8000元的判定为小康户.

1)用样本估计总体,估计该地区还有多少户没有脱贫;

2)为了了解未脱贫的原因,从抽取的50户中用分层抽样的方法抽10户进行调研.

①贫困户、脱贫户、小康户分别抽到的人数是多少?

②从被抽到的脱贫户和小康户中各选1人做经验介绍,求小康户中人均年收入最高的一户被选到的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直三棱柱ABCA1B1C1中,平面ABC是下底面.MBB1上的点,AB3BC4AC5CC17,过三点AMC1作截面,当截面周长最小时,截面将三棱柱分成的上、下两部分的体积比为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据相关数据统计,2019年底全国已开通基站13万个,部分省市的政府工作报告将推进通信网络建设列入2020年的重点工作,今年一月份全国共建基站3万个.

1)如果从2月份起,以后的每个月比上一个月多建设2000个,那么,今年底全国共有基站多少万个.(精确到0.1万个)

2)如果计划今年新建基站60万个,到2022年底全国至少需要800万个,并且,今后新建的数量每年比上一年以等比递增,问2021年和2022年至少各建多少万个オ能完成计划?(精确到1万个)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的左、右焦点分别为轴的正半轴上一点,交椭圆于,且的内切圆半径为1.

1)求椭圆的标准方程;

2)若点为圆上一点,求的取值范围.

查看答案和解析>>

同步练习册答案