精英家教网 > 高中数学 > 题目详情

【题目】已知数列的前项和分别为,且,其中为常数.

1)若.

①求数列的通项公式;

②求数列的通项公式.

2)若.求证:.

【答案】1)①,②2)见解析.

【解析】

1)①已知两等式相加可得是等比数列,从而可得通项公式,②已知两等式相减可得的递推关系式,凑配成一个新的等比数列,利用等比数列的通项公式可求得

2)已知两等式相加可得数列是等比数列,就是的前项和,分类求得这个和,在时用数学归纳法证明不等式成立.

(1)若,则有

,得:

所以是公比为4的等比数列,首项

所以

,得:

所以是公比为2的等比数列,首项

所以,则

2)由,得

,∴数列是等比数列,

时,,不等式左边,右边,不等式成立;

时,

不等式即为

下面用数学归纳法证明:

i时,左边,右边,左边右边,不等式成立,

ii)假设时,不等式成立,即

,∴

时,左边=

由归纳假设左边

下面只要证,即证

再用数学归纳法证明

时,不等式左边,右边,不等式成立,

②假设)时不等式成立,即

时,,不等式也成立,

由①②得时,不等式成立,

时,不等式成立,

由(i)(ii),原不等式对一切正整数都成立.

综上,原不等式得证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】过抛物线的焦点F任作两条互相垂直的直线,分别与抛物线E交于AB两点和CD两点,则的最小值为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为F,直线lC交于MN两点.

1)若l过点F,点MN到直线y2的距离分别为d1d2,且,求l的方程;

2)若点M的坐标为(01),直线m过点MC于另一点N′,当直线lm的斜率之和为2时,证明:直线NN′过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,共享单车在我国各城市迅猛发展,为人们的出行提供了便利,但也给城市的交通管理带来了一些困难,为掌握共享单车在省的发展情况,某调查机构从该省抽取了5个城市,并统计了共享单车的指标指标,数据如下表所示:

城市1

城市2

城市3

城市4

城市5

指标

2

4

5

6

8

指标

3

4

4

4

5

1)试求间的相关系数,并说明是否具有较强的线性相关关系(若,则认为具有较强的线性相关关系,否则认为没有较强的线性相关关系).

2)建立关于的回归方程,并预测当指标为7时,指标的估计值.

3)若某城市的共享单车指标在区间的右侧,则认为该城市共享单车数量过多,对城市的交通管理有较大的影响交通管理部门将进行治理,直至指标在区间内现已知省某城市共享单车的指标为13,则该城市的交通管理部门是否需要进行治理?试说明理由.

参考公式:回归直线中斜率和截距的最小二乘估计分别为

,,相关系数

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】发展“会员”、提供优惠,成为不少实体店在网购冲击下吸引客流的重要方式.某连锁店为了吸引会员,在2019年春节期间推出一系列优惠促销活动.抽奖返现便是针对“白金卡会员”、“金卡会员”、“银卡会员”、“基本会员”不同级别的会员享受不同的优惠的一项活动:“白金卡会员”、“金卡会员”、“银卡会员”、“基本会员”分别有4次、3次、2次、1次抽奖机会.抽奖机如图:抽奖者第一次按下抽奖键,在正四面体的顶点出现一个小球,再次按下抽奖键,小球以相等的可能移向邻近的顶点之一,再次按下抽奖键,小球又以相等的可能移向邻近的顶点之一……每一个顶点上均有一个发光器,小球在某点时,该点等可能发红光或蓝光,若出现红光则获得2个单位现金,若出现蓝光则获得3个单位现金.

1)求“银卡会员”获得奖金的分布列;

2表示第次按下抽奖键,小球出现在点处的概率.

的值;

写出关系式,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直三棱柱ABCA1B1C1中,平面ABC是下底面.MBB1上的点,AB3BC4AC5CC17,过三点AMC1作截面,当截面周长最小时,截面将三棱柱分成的上、下两部分的体积比为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图是2020215日至32日武汉市新增新冠肺炎确诊病例的折线统计图.则下列说法不正确的是(

A.2020219日武汉市新增新冠肺炎确诊病例大幅下降至三位数

B.武汉市在新冠肺炎疫情防控中取得了阶段性的成果,但防控要求不能降低

C.2020219日至32日武汉市新增新冠肺炎确诊病例低于400人的有8

D.2020215日到32日武汉市新增新冠肺炎确诊病例最多的一天比最少的一天多1549

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在直角梯形中,分别是上的点,,且(如图①).将四边形沿折起,连接(如图②).在折起的过程中,则下列表述:

平面

②四点可能共面;

③若,则平面平面

④平面与平面可能垂直.其中正确的是__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)sin(ωx+φ)cos(ωx+φ)(0<φ<π,ω>0)为偶函数,且y=f(x)图象的两相邻对称轴间的距离为,则f()的值为( )

A.1B.1C..D.

查看答案和解析>>

同步练习册答案