精英家教网 > 高中数学 > 题目详情
给出下列命题:
(1)等比数列{an}的公比为q,则“q>1”是“an+1an(n∈N*)”的既不充分也不必要条件;
(2)“x≠1”是“x2≠1”的必要不充分条件;
(3)函数的y=lg(x2+ax+1)的值域为R,则实数-2<a<2;
(4)“a=1”是“函数y=cos2ax-sin2ax的最小正周期为π”的充要条件.
其中真命题的个数是(  )
分析:根据等比数列的性质及递增数列的定义,结合充要条件的定义可判断(1)的真假;
分别判断“x≠1”⇒“x2≠1”与“x2≠1”⇒“x≠1”的真假,结合充要条件的定义可判断(2)的真假;
根据函数的y=lg(x2+ax+1)的值域为R,则真数可取任意正数,其最小值不大于0,求出a的范围,可判断(3)的真假;
根据倍角公式及三角函数的周期,结合充要条件的定义可判断(4)的真假;
解答:解:若首项为负,则公比q>1时,数列为递减数列an+1an(n∈N*),当an+1an(n∈N*)时,包含首项为正,公比q>1和首项为负,公比0<q<1两种情况,故(1)正确;
“x≠1”时,“x2≠1”在x=-1时成立,“x2≠1”时,“x≠1”一定成立,故(2)正确
函数的y=lg(x2+ax+1)的值域为R,则x2+ax+1=0的△=a2-4≥0,解得-2≤a≤2,故(3)错误;
“a=1”时,“函数y=cos2x-sin2x=cos2x的最小正周期为π”,但“函数y=cos2ax-sin2ax的最小正周期为π”时,“a=±1”,故“a=1”是“函数y=cos2ax-sin2ax的最小正周期为π”的充分不必要条件,故(4)错误
故选B
点评:本题以命题的真假判断为载体考查了充要条件的定义,熟练掌握充要条件的定义及证明方法是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列命题:
(1)已知可导函数f(x),x∈D,则函数f(x)在点x0处取得极值的充分不必要条件是f′(x0)=0,x0∈D.
(2)已知命题P:?x∈R,sinx≤1,则¬p:?x∈R,sinx>1.
(3)已知命题p:
1
x 2-3x+2
>0
,则¬p:
1
x 2-3x+2
≤0

(4)给定两个命题P:对任意实数x都有ax2+ax+1>0恒成立;Q:关于x的方程x2-x+a=0有实数根.如果P∧Q为假命题,P∨Q为真命题,则实数a的取值范围是(-∞,0)∪(
1
4
,4)

其中所有真命题的编号是
(2),(4)
(2),(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•万州区一模)已知函数f(x)=|x2-2ax+b|(x∈R),给出下列命题:
(1)f(x)不可能是偶函数;
(2)当f(0)=f(2)时,f(x)的图象必关于直线x=1对称;
(3)若a2-b≤0,则f(x)在区间[a,+∞)上是增函数;
(4)f(x)有最小值b-a2
其中正确的命题的序号是
(3)
(3)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:①y=1是幂函数;②函数y=|x+2|-2x在R上有3个零点;③
x-1
(x-2)≥0
的解集为[2,+∞);④当n≤0时,幂函数y=xn的图象与两坐标轴不相交;其中正确的命题是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

某班级有男生20人,女生30人,从中抽取10个人的样本,恰好抽到了4个男生、6个女生.给出下列命题:
(1)该抽样可能是简单的随机抽样;
(2)该抽样一定不是系统抽样;
(3)该抽样女生被抽到的概率大于男生被抽到的概率.
其中真命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设a1,a2,a3,a4是等差数列,且满足1<a1<3,a3=4,若bn=2an,给出下列命题:(1)b1,b2,b3,b4是一个等比数列; (2)b1<b2; (3)b2>4; (4)b4>32; (5)b2b4=256.其中真命题的个数是(  )

查看答案和解析>>

同步练习册答案