【题目】已知函数
(
,
是自然对数的底数).
(1)若函数
在点
处的切线方程为
,试确定函数
的单调区间;
(2)①当
,
时,若对于任意
,都有
恒成立,求实数
的最小值;②当
时,设函数
,是否存在实数
,使得
?若存在,求出
的取值范围;若不存在,说明理由.
【答案】(1)
在
上单调递减,在
上单调递增;(2)①
;②存在
,使得命题成立
【解析】
(1)利用切线方程可知
,
,从而构造出方程组求得
,得到
解析式,根据导函数的符号确定
的单调区间;(2)①将问题转化为
对任意
恒成立;设
,利用导数求解
,可得
;②设存在
,使得
,将问题转化为
,利用导数分别在
,
和
研究
的最大值和最小值,从而根据最值的关系可求得
的取值范围.
(1)由题意![]()
在点
处的切线方程为:![]()
,
,即:
解得:
,![]()
,![]()
当
时,
,当
时,![]()
在
上单调递减,在
上单调递增
(2)①由
,
,
,即:![]()
对任意
,都有
恒成立等价于
对任意
恒成立
记
,![]()
设
对
恒成立
在
单调递增
而
,![]()
在
上有唯一零点![]()
当
时,
,当
时,![]()
在
单调递减,在
上单调递增
的最大值是
和
中的较大的一个
,即
,
的最小值为![]()
②假设存在
,使得
,则问题等价于![]()
![]()
⑴当
时,
,则
在
上单调递减
,即
,得:
![]()
(2)当
时,
,则
在
上单调递增
,即
,得:
![]()
(3)当
时,当
时,
;当
时,
,
在
上单调递减,在
上单调递增
,即
……(*)
由(1)知![]()
上单调递减,故
,而![]()
不等式(*)无解
综上所述,存在
,使得命题成立
科目:高中数学 来源: 题型:
【题目】一年之计在于春,一日之计在于晨,春天是播种的季节,是希望的开端.某种植户对一块地的
个坑进行播种,每个坑播3粒种子,每粒种子发芽的概率均为
,且每粒种子是否发芽相互独立.对每一个坑而言,如果至少有两粒种子发芽,则不需要进行补播种,否则要补播种.
(1)当
取何值时,有3个坑要补播种的概率最大?最大概率为多少?
(2)当
时,用
表示要补播种的坑的个数,求
的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,
![]()
已知圆
和圆
.
(1)若直线
过点
,且被圆
截得的弦长为
,
求直线
的方程;(2)设P为平面上的点,满足:
存在过点P的无穷多对互相垂直的直线
和
,
它们分别与圆
和圆
相交,且直线
被圆![]()
截得的弦长与直线
被圆
截得的弦长相等,试求所有满足条件的点P的坐标。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了调查煤矿公司员工的饮食习惯与月收入之间的关系,随机抽取了30名员工,并制作了这30人的月平均收入的频率分布直方图和饮食指数表(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主).其中月收入4000元以上员工中有11人饮食指数高于70.
![]()
20 | 21 | 21 | 25 | 32 | 33 |
36 | 37 | 42 | 43 | 44 | 45 |
45 | 58 | 58 | 59 | 61 | 66 |
74 | 75 | 76 | 77 | 77 | 78 |
78 | 82 | 83 | 85 | 86 | 90 |
(Ⅰ)是否有95%的把握认为饮食习惯与月收入有关系?若有请说明理由,若没有,说明理由并分析原因;
(Ⅱ)以样本中的频率作为概率,从该公司所有主食蔬菜的员工中随机抽取3人,这3人中月收入4000元以上的人数为
,求
的分布列与期望;
(Ⅲ)经调查该煤矿公司若干户家庭的年收入
(万元)和年饮食支出
(万元)具有线性相关关系,并得到
关于
的回归直线方程:
.若该公司一个员工与其妻子的月收入恰好都为这30人的月平均收入(该家庭只有两人收入),估计该家庭的年饮食支出费用.
附:
.
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知
是半圆
的直径,
,
是将半圆圆周四等分的三个分点.
![]()
(1)从
这5个点中任取3个点,求这3个点组成直角三角形的概率;
(2)在半圆内任取一点
,求
的面积大于
的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,
,四边形BDEF是矩形,平面
平面ABCD,
,H是CF的中点.
![]()
(1)求证:
平面BDEF;
(2)求直线DH与平面CEF所成角的正弦值;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com