精英家教网 > 高中数学 > 题目详情
1.已知椭圆$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{16}$=1上点P到某一个焦点的距离为3,则点P到另一个焦点的距离为(  )
A.3B.5C.7D.9

分析 由题意知a=6,b=4,c=2$\sqrt{5}$,再结合椭圆的定义可知|PF1|+|PF2|=2a=12,从而解得.

解答 解:∵椭圆的方程为$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{16}$=1,
∴a=6,b=4,c=2$\sqrt{5}$,
设焦点为F1,F2,不妨设|PF1|=3,
∵|PF1|+|PF2|=2a=12,
∴|PF2|=12-|PF1|=9,
故选D.

点评 本题考查了椭圆的定义的应用及椭圆的标准方程的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.在与360(rad)角终边相同的角中,绝对值最小的角是360-114π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知($\frac{5}{3}$,0)是函数f(x)=$\sqrt{3}$sin(ωx+$\frac{π}{6}$)(0<ω<2)的一个对称中心.
(1)求f(x)的解析式;
(2)求f(x)的增区间及对称轴方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求下列曲线的标准方程:
(1)与椭圆x2+4y2=16有相同焦点,过点p($\sqrt{5}$,$\sqrt{6}$),求此椭圆标准方程;
(2)求以原点为顶点,以坐标轴为对称轴,且焦点在直线3x-4y-12=0的抛物线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知抛物线C:x2=2py的焦点与椭圆$\frac{{y}^{2}}{4}$+$\frac{{x}^{2}}{3}$=1的上焦点重合,点A是直线x-2y-8=0上任意一点,过A作抛物线C的两条切线,切点分别为M,N.
(I)求抛物线C的方程;
(Ⅱ)证明直线MN过定点,并求出定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.P为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上异于左右顶点A1,A2的任意一点,则直线PA1与PA2的斜率之积为定值-$\frac{{b}^{2}}{{a}^{2}}$,将这个结论类比到双曲线,得出的结论为:P为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)上异于左右顶点A1,A2的任意一点,则(  )
A.直线PA1与PA2的斜率之和为定值$\frac{{a}^{2}}{{b}^{2}}$
B.直线PA1与PA2的斜率之积为定值$\frac{{a}^{2}}{{b}^{2}}$
C.直线PA1与PA2的斜率之和为定值$\frac{{b}^{2}}{{a}^{2}}$
D.直线PA1与PA2的斜率之积为定值$\frac{{b}^{2}}{{a}^{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知A,B,P是$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$上不同的三点,且A,B连线经过坐标原点,若直线PA,PB的斜率乘积${k_{PA}}•{k_{PB}}=-\frac{4}{9}$,则的离心率(  )
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{5}}}{3}$C.$\sqrt{2}$D.$\frac{{\sqrt{15}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知离心率为$\frac{1}{2}$的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点A(2,0)
(Ⅰ)求椭圆C的方程;
(Ⅱ)过椭圆C右焦点的直线l与椭圆C交于不同的两点M,N,且S△AMN=$\frac{6\sqrt{2}}{7}$,求直线l的一般方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={0,l,3},B={x|x2-3x=0},则A∩B=(  )
A.{0}B.{0,1}C.{0,3}D.{0,1,3}

查看答案和解析>>

同步练习册答案