精英家教网 > 高中数学 > 题目详情
17.已知AD是△ABC的角平分线,且AC=2,AB=4,cos∠BAC=$\frac{11}{16}$.
(1)求△ABC的面积;
 (2)求AD的长.

分析 (1)由cos∠BAC=$\frac{11}{16}$,∠BAC∈(0,π),可得sin∠BAC=$\sqrt{1-co{s}^{2}∠BAC}$,即可得出S△ABC
(2)由AD是△ABC的角平分线,可得$\frac{BD}{DC}$=$\frac{AB}{AC}$=2,∠BAD=$\frac{1}{2}$∠BAC,利用cos∠BAC=1-2sin2∠BAD,解得sin∠BAD.利用S△ABD=$\frac{1}{3}$S△ABC=$\frac{\sqrt{15}}{4}$=$\frac{1}{2}AB×ADsin\frac{1}{2}∠BAC$,即可得出.

解答 解:(1)∵cos∠BAC=$\frac{11}{16}$,∠BAC∈(0,π),∴sin∠BAC=$\sqrt{1-co{s}^{2}∠BAC}$=$\frac{3\sqrt{15}}{16}$.
∴S△ABC=$\frac{1}{2}$×2×4×$\frac{3\sqrt{15}}{16}$=$\frac{3\sqrt{15}}{4}$.
(2)由AD是△ABC的角平分线,∴$\frac{BD}{DC}$=$\frac{AB}{AC}$=2,∠BAD=$\frac{1}{2}$∠BAC,
∴cos∠BAC=1-2sin2∠BAD,∴$\frac{11}{16}$=1-2sin2∠BAD,解得sin∠BAD=$\frac{\sqrt{10}}{8}$.
∴S△ABD=$\frac{2}{3}$S△ABC=$\frac{\sqrt{15}}{2}$=$\frac{1}{2}AB×ADsin\frac{1}{2}∠BAC$=$\frac{1}{2}×4×AD$×$\frac{\sqrt{10}}{8}$.
解得AD=$\sqrt{6}$.

点评 本题考查了角平分线的性质、三角形面积计算公式、倍角公式、三角函数求值,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.阅读右边程序,若输入的a,b值分别为3,-5,则输出的a,b值分别为(  )
A.-1,4B.3,$\frac{1}{2}$C.$\frac{1}{2},-\frac{5}{4}$D.3,$-\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ex,g(x)=lnx+m.
(1)当m=-1时,求函数F(x)=$\frac{f(x)}{x}$+x•g(x)在(0,+∞)上的极值;
(2)若m=2,求证:当x∈(0,+∞)时,f(x)>g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{1}{2}$f′(1)x+xlnx
(1)求函数f(x)的极值;
(2)若k∈Z,且f(x)>k(x-1)对任意的x∈(1,+∞)都成立,求整数k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知某连锁经营公司所属5个零售店某月的销售额和利润额资料如表:
商店名称ABCDE
销售额x (千万元)35679
利润额y (百万元)23345
(I)画出散点图;
(Ⅱ)根据如下的参考公式与参考数据,求利润额y与销售额x之间的线性回归方程;
(Ⅲ)若该公司还有一个零售店某月销售额为11千万元,试估计它的利润额是多少?
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,其中$\sum_{i=1}^{n}{x}_{i}{y}_{i}$=112,$\sum_{i=1}^{n}{{x}_{i}}^{2}$=200)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知抛物线C:y2=2px(p>0)的焦点F与椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的右焦点重合,抛物线C的准线l与x轴的交点为M,过点M且斜率为k的直线l1交抛物线C于A,B两点,线段AB的中点为P,直线PF与抛物线C交于D,E两点
(Ⅰ)求抛物线C的方程;
(Ⅱ)若λ=$\frac{|MA|•|MB|}{|FD|•|FE|}$,写出λ关于k的函数解析式,并求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x3-x
(1)求曲线y=f(x)在点M(1,0)处的切线方程;
(2)如果过点(1,b)可作曲线y=f(x)的三条切线,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知抛物线C:y2=2px(p>0)的焦点为F,其准线与x轴相交于点M,过焦点F且斜率为1的直线与抛物线相交所得弦的中点的纵坐标为2.已知直线l:x=my+$\frac{p}{2}$与抛物线C交于A,B两点,且$\overrightarrow{AF}$=λ$\overrightarrow{FB}$(1≤λ≤3).
(1)求抛物线C的方程;
(2)求$\overrightarrow{MA}$2+$\overrightarrow{MB}$2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.计算${(\frac{{\sqrt{2}i}}{1+i})^{100}}$的结果为-1.

查看答案和解析>>

同步练习册答案