精英家教网 > 高中数学 > 题目详情
动圆C过定点(1,0),且与直线x=-1相切.设圆心C的轨迹Γ方程为F(x,y)=0
(1)求F(x,y)=0;
(2)曲线Γ上一定点P(1,2),方向向量的直线l(不过P点)与曲线Γ交与A、B两点,设直线PA、PB斜率分别为kPA,kPB,计算kPA+kPB
(3)曲线Γ上的一个定点P(x,y),过点P作倾斜角互补的两条直线PM,PN分别与曲线Γ交于M,N两点,求证直线MN的斜率为定值.
【答案】分析:(1)过点C作直线x=-1的垂线,垂足为N,由题意知:|CF|=|CN|,由抛物线的定义知,点C的轨迹为抛物线.
(2)设 A(x1,y1)、B(x2,y2),由题得直线的斜率-1,过不过点P的直线方程为y=-x+b,代入抛物线方程得y2+4y-4b=0,利用根与系数的关系及斜率公式,计算 的值,从而得出结论.
(3)设M(x1,y1),N(x2,y2),计算 的解析式.设MP的直线方程为y-y=k(x-x),代入抛物线方程利用根与系数的关系求得 y1+y2的值,从而求得kMN的值,从而得出结论.
解答:解:(1)过点C作直线x=-1的垂线,垂足为N,由题意知:|CF|=|CN|,
即动点C到定点F与定直线x=-1的距离相等,由抛物线的定义知,点C的轨迹为抛物线.
其中(1,0)为焦点,x=-1为准线,所以轨迹方程为y2=4x.
(2)证明:设 A(x1,y1)、B(x2,y2),由题得直线的斜率-1.
过不过点P的直线方程为y=-x+b,由  得  y2+4y-4b=0,则y1+y2=-4.
由于P(1,2),=
===0.
(3)设M(x1,y1),N(x2,y2),则 ==(***).
设MP的直线方程为y-y=k(x-x),
,可得
,∴
同理,得
代入(***)计算得:y1+y2=-2y0 ,∴(为定值).
点评:本题主要考查抛物线的定义,圆的标准方程,一元二次方程根与系数的关系,直线的斜率公式,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•奉贤区二模)动圆C过定点F(
p
2
,0)
,且与直线x=-
p
2
相切,其中p>0.设圆心C的轨迹Γ的程为F(x,y)=0
(1)求F(x,y)=0;
(2)曲线Γ上的一定点P(x0,y0)(y0≠0),方向向量
d
=(y0,-p)
的直线l(不过P点)与曲线Γ交与A、B两点,设直线PA、PB斜率分别为kPA,kPB,计算kPA+kPB
(3)曲线Γ上的两个定点P0(x0,y0)、Q0(x0y0),分别过点P0,Q0作倾斜角互补的两条直线P0M,Q0N分别与曲线Γ交于M,N两点,求证直线MN的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•奉贤区二模)动圆C过定点(1,0),且与直线x=-1相切.设圆心C的轨迹Γ方程为F(x,y)=0
(1)求F(x,y)=0;
(2)曲线Γ上一定点P(1,2),方向向量
d
=(1,-1)
的直线l(不过P点)与曲线Γ交与A、B两点,设直线PA、PB斜率分别为kPA,kPB,计算kPA+kPB
(3)曲线Γ上的一个定点P0(x0,y0),过点P0作倾斜角互补的两条直线P0M,P0N分别与曲线Γ交于M,N两点,求证直线MN的斜率为定值.

查看答案和解析>>

科目:高中数学 来源:奉贤区二模 题型:解答题

动圆C过定点F(
p
2
,0)
,且与直线x=-
p
2
相切,其中p>0.设圆心C的轨迹Γ的程为F(x,y)=0
(1)求F(x,y)=0;
(2)曲线Γ上的一定点P(x0,y0)(y0≠0),方向向量
d
=(y0,-p)
的直线l(不过P点)与曲线Γ交与A、B两点,设直线PA、PB斜率分别为kPA,kPB,计算kPA+kPB
(3)曲线Γ上的两个定点P0(x0,y0)、Q0(x0y0),分别过点P0,Q0作倾斜角互补的两条直线P0M,Q0N分别与曲线Γ交于M,N两点,求证直线MN的斜率为定值.

查看答案和解析>>

科目:高中数学 来源:奉贤区二模 题型:解答题

动圆C过定点(1,0),且与直线x=-1相切.设圆心C的轨迹Γ方程为F(x,y)=0
(1)求F(x,y)=0;
(2)曲线Γ上一定点P(1,2),方向向量
d
=(1,-1)
的直线l(不过P点)与曲线Γ交与A、B两点,设直线PA、PB斜率分别为kPA,kPB,计算kPA+kPB
(3)曲线Γ上的一个定点P0(x0,y0),过点P0作倾斜角互补的两条直线P0M,P0N分别与曲线Γ交于M,N两点,求证直线MN的斜率为定值.

查看答案和解析>>

同步练习册答案