精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2|x|-sin(
2
+x),对于任意的x1,x2∈[-π,π],有如下条件:
①x12>x22;   ②x1>x2;  ③|x1|>x2;   ④x1>|x2|.
其中能使f(x1)>f(x2)恒成立的条件序号是
 
考点:函数恒成立问题
专题:综合题,函数的性质及应用
分析:化简f(x)后可判断f(x)的奇偶性、单调性,借助偶函数的性质可判断①④的正确性;举反例可说明②③的错误.
解答: 解:f(x)=2|x|-sin(
2
+x)=2|x|-cosx,
∵f(-x)=2|-x|-cos(-x)=2|x|-cosx=f(x),
∴函数f(x)=2|x|-cosx为偶函数,
∴f(-x)=f(|x|);
又x∈[0,π]时,2|x|=2x递增,-cosx递增,
∴f(x)=2|x|-cosx在[0,π]上单调递增,且在[-π,0]上单调递减.
①中,x12>x22,即|x1|>|x2|,
结合偶函数的性质得f(|x1|)>f(|x2|),
∴f(x1)>f(x2);
④中,x1>|x2|,即|x1|>|x2|,
于是也有f(x1)>f(x2);
②③中,取x1=0,x2=-1,可知 f(x1)<f(x2);
故答案为:①④.
点评:本题考查函数f(x)的奇偶性与单调性,得到f(x)为偶函数,在[0,π]上单调递增是关键,考查分析转化能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+bx2+cx在x=2处取得极值4,且其导函数y=f′(x)的图象经过坐标原点.
(1)求函数y=f(x)的解析式;
(2)若x∈[-3,3],求y=f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义“等积数列”:在一个数列中,如果每一项与它的后一项的积都为同一个常数,那么这个数列叫做等积数列,这个常数叫做该数列的公积,已知数列{an}是等积数列,且a1=3,公积为15,那么a2014=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
AM
=
1
4
AB
+
3
4
AC
,则△ABM与△ABC的面积之比为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列结论中正确命题的个数是
 

①命题p:“?x∈R,x2-2≥0”的否定形式是?p:?x∈R,x2-2<0;
②若?p是q的必要条件,则p是?q的充分条件;
③“M>N”是“(
3
4
)M>(
3
4
)N
”的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的是
 

①y=sinx+
4
sinx
(0<x≤
π
2
)的最小值为4
②y=
x2+5
x2+4
的最小值为2
③y=ex+e-x的最小值为2
④x>0,y>0,且x+y=20,则m=lgx+lgy的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(an,2),
b
=(an+1
2
5
),且a1=1,若数列{an}的前n项和为Sn,且
a
b
,则Sn=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的奇函数f(x)的导函数为f′(x),当x≠0时,f′(x)+
f(x)
x
>0,若a=
1
2
f(
1
2
)
,b=-2f(-2),c=ln
1
2
f(ln2),则a,b,c的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

经过点(2,-1),且与直线x+y-5=0平行的直线方程是
 

查看答案和解析>>

同步练习册答案