精英家教网 > 高中数学 > 题目详情
11.方程$|\begin{array}{l}{cosx}&{sinx}\\{sinx}&{cosx}\end{array}|$=0的解为x=$\frac{kπ}{2}+\frac{π}{4}$,k∈Z.

分析 根据行列式的定义知:$|\begin{array}{l}{cosx}&{sinx}\\{sinx}&{cosx}\end{array}|$=cos2x-sin2x=cos2x,则 $|\begin{array}{l}{cosx}&{sinx}\\{sinx}&{cosx}\end{array}|$=0转化为cos2x=0,即可求解.

解答 解:$|\begin{array}{l}{cosx}&{sinx}\\{sinx}&{cosx}\end{array}|$=cos2x-sin2x=cos2x=0,
∴x=$\frac{kπ}{2}+\frac{π}{4}$,k∈Z
故答案为:x=$\frac{kπ}{2}+\frac{π}{4}$,k∈Z.

点评 本题主要考查了行列式的定义及应用,考查了二倍角公式的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.设集合A={1,a,b},B={a,a2,ab},且A=B,求a2014+b2014

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ax2+bx-lnx(a,b∈R)
(1)设a≥0,求f(x)的单调区间;
(2)设a>0,且对于任意x>0,f(x)≥f(1).试比较lna与-2b的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,若$\frac{a}{cosA}$=$\frac{b}{cosB}$,则△ABC是(  )
A.等腰三角形B.直角三角形
C.等腰或直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.计算:1.5${\;}^{-\frac{1}{3}}$×(-$\frac{6}{7}$)0+80.25×$\root{4}{2}$+($\root{3}{2}$×$\sqrt{3}$)6-$\sqrt{(-\frac{2}{3})^{\frac{2}{3}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.不等式$\frac{3{x}^{2}+2x+2}{{x}^{2}+x+1}$≥m对任意实数x都成立,求自然数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知a是实数,函数f(x)=$\sqrt{x}(x-a)$.
(1)求函数f(x)的单调区间;
(2)设g(a)为f(x)在区间[0,2]上的最小值.
(i)写出g(a)的表达式;
(ii)求a的取值范围,使得-6≤g(a)≤-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.下列各组函数中,表示同一函数的是(3)、(5)
(1)f(x)=1,g(x)=x0  (2)f(x)=x+2,g(x)=$\frac{{x}^{2}-4}{x-2}$
(3)f(x)=|x|,g(x)=$\left\{\begin{array}{l}{x}&{x≥0}\\{-x}&{x<0}\end{array}\right.$
(4)f(x)=x,g(x)=($\sqrt{x}$)2
(5)f(x)=x-x2,f(s)=s-s2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.用列举法表示集合A={x∈Z|$\frac{6}{2-x}$∈Z}.

查看答案和解析>>

同步练习册答案