精英家教网 > 高中数学 > 题目详情
已知关于x的一元二次方程f(x)=ax2-4bx+1
(1)设集合P={1,2,3},Q={-1,1,2,3,4},分别从集合P,Q中随机取一个数为a和b,求函数y=f(x)在[1,+∞)上是增函数的概率
(2)设点(a,b)是区域
x+y-8≤0
x>0
y>0
内的随机点,设A={f(1)<0},求事件A发生的概率.
考点:几何概型
专题:概率与统计
分析:(Ⅰ)根据古典概率的概率公式进行计算即可求出概率.
(Ⅱ)根据几何概型的概率公式进行计算即可.
解答: 解(Ⅰ)∵函数f(x)=ax2-4bx+1的图象的对称轴为x=
2b
a

要使f(x)=ax2-4bx+1在区间[1,+∞)上为增函数,
当且仅当a>0且x=
2b
a
≤1,
即2b≤a.
若a=1,则b=-1;
若a=2,则b=-1,1;
若a=3,则b=-1,1,
∴事件包含基本事件的个数是1+2+2=5
∴所求事件的概率为
5
15
=
1
3

(Ⅱ)由(1)知当且仅当2b≤a.且a>0时,
函数f(x)=ax2-4bx+1在区间[1,+∞)上为增函数,
依条件可知试验的全部结果所构成的区域为{(a,b)|
a+b-8≤0
a>0
b>0
}
构成所求事件的区域为三角形部分对应的面积S=
1
2
×8×8=32

事件A满足{(a,b)|
a+b-8≤0
a>0,b>0
f(1)<0
}={(a,b)|
a+b-8≤0
a>0,b>0
a-4b+1<0
},
a+b-8=0
a-4b+1=0
,解得a=
31
5
,b=
9
5
,即交点坐标(
31
5
9
5
),
则对应三角形的面积S=
1
2
×(8-
1
4
31
5
=
961
40

则所求事件的概率为P=
961
40
32
=
961
1280
点评:本题只要考查概率的求法,要求熟练掌握古典概型和几何概型的概率公式,注意它们之间的联系和区别.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在正四棱锥P-ABCD中,若侧面与底面所成二面角的大小为60°,则异面直线PA与BC所成角的正切值等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC内接于以O为圆心半径为1的圆,且3
OA
+4
OB
+5
OC
=
0
,则S△AOB=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

长沙市对地铁1、2号线计价“起步价2元可乘6公里采用“递远递减”的计价原则”进行调查,随机抽查了50人,他们月收入的频数分布及对“计价方案”赞成人数如下表.
月收入(单位:百元)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
频数510151055
赞成人数4815521
(1)由以上统计数据填写下面2乘2列联表并问是否有99%的把握认为月收入以5500为分界点对“计价方案”的态度有差异:
 月收入不低于55百元的人数月收入低于55百元的人数合计
赞成a=c= 
不赞成b=d= 
合计   
(2)若对月收入在[15,25),[25,35)的被调查人中各随机选取两人进行追踪调查,记选中的四个人中不赞成“计价方案”的人数为ξ,求随机变量ξ的分布列及数学期望.
参考数据:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列结论正确的是
 
(写出正确结论的序号)
①直线l:(2m+1)x+(m+1)y=7m+4,无论m为何值时,l恒过定点(3,1)
②若a1,a2,…,a20这20个数据的平均数为
.
x
,方差为0.20,则a1,a2,…,a20
.
x
这21个数据的方差为0.2.
③某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此求出的平均数与实际平均数的差为-3.
④过直线l1:x+2=0与l2:4x+3y+5=0的交点,且与点A(-1,-2)的距离等于1的直线l的方程为3x+y+5=0.
⑤若直线y=x+k和半圆y=
1-x2
只有一个交点,则k的取值范围为-1≤k<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法:
①“?x∈R”使“2x>3”的否定“?x∈R,使2x<3
②把函数y=sin2x图象上所有点向右平移
π
3
个单位得到y=sin(2x-
π
3
)的图象
③命题“函数f(x)在x=x0处有极值,则f′(x)=0”的否命题是真命题;
④f(x)是(-∞,0)∪(0,+∞)上的奇函数,x>0时的解析式是f(x)=2x,则x<0时的解析式为f(x)=-2-x
其中所有说法正确的是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ax+
b
x-1
-a(a∈R,a≠0)在x=3处的切线方程与直线(2a-1)x-2y+3=0平行且f(3)=3,若方程f(x)=t(x2-2x+3)|x|有三个解,则实数t的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点D为等腰直角三角形ABC斜边AB的中点,则下列等式中不恒成立的是(  )
A、
CD
=
CA
|
CA
|
+
CB
|
CB
|
B、
AC
2
=
AC
AB
C、
BC
2
=
BC
BA
D、(
CA
+
CB
)•(
CA
-
CB
)=0

查看答案和解析>>

科目:高中数学 来源: 题型:

在可行域内任取一点,规则为如图所示的流程图,则能输出数对(s,t)的概率是(  )
A、
5
B、
π
4
C、
3
4
D、
π
6

查看答案和解析>>

同步练习册答案