精英家教网 > 高中数学 > 题目详情
9.$\overrightarrow{BP}$=(2,m),$\overrightarrow{AP}$=(-1,3m),(2$\overrightarrow{BP}$-$\overrightarrow{AP}$)⊥$\overrightarrow{BP}$,|$\overrightarrow{BP}$|=(  )
A.$\sqrt{14}$B.3C.$\sqrt{15}$D.4

分析 由(2$\overrightarrow{BP}$-$\overrightarrow{AP}$)⊥$\overrightarrow{BP}$得(2$\overrightarrow{BP}$-$\overrightarrow{AP}$)•$\overrightarrow{BP}$=0,列出方程即可解出m,从而计算出|$\overrightarrow{BP}$|.

解答 解:∵(2$\overrightarrow{BP}$-$\overrightarrow{AP}$)⊥$\overrightarrow{BP}$,∴(2$\overrightarrow{BP}$-$\overrightarrow{AP}$)•$\overrightarrow{BP}$=0,
∵2$\overrightarrow{BP}$-$\overrightarrow{AP}$=(5,-m),∴(2$\overrightarrow{BP}$-$\overrightarrow{AP}$)•$\overrightarrow{BP}$=10-m2=0,
解的m2=10,
∴|$\overrightarrow{BP}$|=$\sqrt{{2}^{2}+{m}^{2}}$=$\sqrt{14}$.
故选:A.

点评 本题考查了平面向量的坐标运算,向量垂直与数量积的关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.设A是由满足不等式x<6的自然数组成的集合,若a∈A,且3a∈A,则a的值为0或1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知正方形ABCD和正方形ABEF,如图所示,N,M分别是对角线AE,BD上的点,且$\frac{EN}{AN}$=$\frac{BM}{MD}$.求证:MN∥平面EBC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知定点A(2,0),圆x2+y2=1上有一个动点Q,∠AOQ的角平分线交AQ于点P,求动点P的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知A={-1≤x≤2},B={x|x≤a},若A∪B=B.则实数a的取值范围是a≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在直角梯形ABCD中,∠C=90°,∠B=45°,BC=4,AB=2$\sqrt{2}$,直线l垂直于BC,交BC于点E,记BE=x,0≤x≤4,若l从点B自左向右移动,试写出阴影部分的面积y与x的函数关系式,并画出函数的大致图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知集合A={x|-3≤x≤4},集合B={x|2m-1<x<m+1}
(1)当m=-3时,求集合A∩B
(2)当B⊆A时,求实数m的取值范围;
(3)当B?A时,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设M═{y|y=x2+1},N={y|y=x+1},则M∩N={y|y≥1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在底面为正方形的四棱锥P-ABCD中,侧棱PD⊥底面ABCD,PD=DC,点E是线段PC的中点.
(1)求异面直线AP与BE所成角的大小;
(2)若点F在线段PB上,使得二面角F-DE-B的正弦值为$\frac{\sqrt{3}}{3}$,求$\frac{PF}{PB}$的值.

查看答案和解析>>

同步练习册答案