精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ex(e为自然对数的底数),,x∈R,a>0.
(1)判断函数g(x)的奇偶性,并说明理由;
(2)求函数g(x)的单调递增区间;
(3)证明:对任意实数x1和x2,且x1≠x2,都有不等式成立.
【答案】分析:(1)由定义法判断函数即可,易证;
(2)求出的导数,根据参数a的取值范围分类讨论研究函数的单调性,求出其单调区间;
(3)代入解析式,将不等式转化为根据其形式发现可以令进一步将成立的问题转化为成立的问题,故可构造函数对两个不等式分步证明,下借助函数的单调性证明即可
解答:解:(1)∵函数g(x)的定义域为R,

∴函数g(x)是奇函数.(2分)
(2)(3分)
当a=1时,g'(x)=e-x(ex-1)2≥0且当且仅当x=0时成立等号,故g(x)在R上递增;(4分)
当0<a<1时,,令g'(x)>0得或ex<a,
故g(x)的单调递增区间为(-∞,lna)或(-lna,+∞);(5分)
当a>1时,,令g'(x)>0得ex>a或
故g(x)的单调递增区间为(-∞,-lna)或(lna,+∞).(6分)
(3)不妨设x1>x2?(7分)
,则只需证(8分)
先证,由(2)知g(x)=ex-e-x-2x在R上递增,
∴当x>0时,g(x)>g(0)=0
∴ex-e-x>2x,从而由x>0知成立;(10分)
再证,即证:
,则是减函数,
∴当x>0时,h(x)<h(0)=0,从而成立.(13分)
综上,对任意实数x1和x2,且x1≠x2,都有不等式成立.(14分)
点评:本题考点是利用导数研究函数的单调性,考查了用函数的奇偶性定义证明函数的奇偶性以及用导数求函数的单调区间,用导数证明不等式,本题综合性很强,对做题都观察转化的能力要求较高,是导数应用这一部分的难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=e-x(cosx+sinx),将满足f′(x)=0的所有正数x从小到大排成数列{xn}.求证:数列{f(xn)}为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•西城区二模)已知函数f(x)=e|x|+|x|.若关于x的方程f(x)=k有两个不同的实根,则实数k的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•菏泽一模)已知函数f(x)=e|lnx|-|x-
1
x
|,则函数y=f(x+1)的大致图象为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=e-xsinx(其中e=2.718…).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)求f(x)在[-π,+∞)上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=e-x(x2+x+1).
(Ⅰ)求函数f(x)的单调递减区间;
(Ⅱ)求函数f(x)在[-1,1]上的最值.

查看答案和解析>>

同步练习册答案