【题目】以下四个关于圆锥曲线的命题中
①设A、B为两个定点,k为非零常数,,则动点P的轨迹为双曲线;
②曲线表示焦点在y轴上的椭圆,则;
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④双曲线与椭圆有相同的焦点.
其中真命题的序号为______(写出所有真命题的序号)
【答案】②③④
【解析】
①根据双曲线的定义知|k|<|AB|时方程表示双曲线的一支;
②根据方程表示焦点在y轴上的椭圆时求出t的取值范围即可;
③求出方程2x2-5x+2=0的两根,再判断两个根是否能作为椭圆的离心率和双曲线的离心率;
④分别求出双曲线和椭圆的焦点坐标,判断是否相同即可.
解:对于①,根据双曲线的定义知,当k的范围满足|k|<|AB|时方程表示双曲线的一支,∴①错误;
对于②,令,解得<t<4,此时曲线表示焦点在y轴上的椭圆,∴②正确;
对于③,解方程2x2-5x+2=0,得x=或x=2;可作为椭圆的离心率,2可作为双曲线的离心率,∴③正确;
对于④,双曲线中,c==,焦点坐标为F1(-,0)、F2(,0);
椭圆中,c′==,焦点坐标为F1′(-,0)、F2(,0),
它们的焦点相同,∴④正确;
综上知,其中真命题的序号是②③④.
故答案为:②③④.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)求的普通方程和的直角坐标方程;
(2)若上恰有2个点到的距离等于,求的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,圆C与x轴相切于点T(2,0),与y轴的正半轴相交于A,B两点(A在B的上方),且AB=3.
(1)求圆C的方程;
(2)直线BT上是否存在点P满足PA2+PB2+PT2=12,若存在,求出点P的坐标,若不存在,请说明理由;
(3)如果圆C上存在E,F两点,使得射线AB平分∠EAF,求证:直线EF的斜率为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,命题方程表示焦点在轴上的椭圆,命题方程表示双曲线.
(1)若命题是真命题,求实数的范围;
(2)若命题“或”为真命题,“且”是假命题,求实数的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.数列前n项和为,且满足,.
(1)求数列的通项公式:
(2)若,求正整数m的值;
(3)是否存在正整数m,使得恰好为数列中的一项?若存在,求出所有满足条件的m值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆的面积为,且与轴、轴分别交于两点.
(1)求圆的方程;
(2)若直线与线段相交,求实数的取值范围;
(3)试讨论直线与(1)小题所求圆的交点个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设、分别是椭圆的左、右焦点.
(1)若是该椭圆上的一个动点,求的最大值;
(2)设过定点的直线与椭圆交于不同的两点、,且为锐角(其中为坐标原点),求直线的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,矩形中,为的中点,将沿直线翻折成,连结,为的中点,则在翻折过程中,下列说法中所有正确的序号是_______.
①存在某个位置,使得;
②翻折过程中,的长是定值;
③若,则;
④若,当三棱锥的体积最大时,三棱锥的外接球的表面积是.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com