精英家教网 > 高中数学 > 题目详情

【题目】已知:正三棱柱中, 为棱的中点.

)求证: 平面

)求证:平面平面

)求四棱锥的体积.

【答案】(1)见解析;(2)见解析;(3)

【解析】试题分析:

1要证线面平行,就是要证线线平行,考虑过直线的平面与平面的交线(其中的交点),而由中位线定理易得从而得线面平行;

2由于是正三角形,因此有,从而只要再证与平面内另一条直线垂直即可,这可由正棱柱的侧棱与底面垂直得到,从而得线面垂直,于是有面面垂直;

3要求四棱锥的体积,由正三棱柱的性质知中,边的高就是四棱锥的高,再求得四边形的面积,即可得体积.

试题解析:

)证明:连接,交点,连接

∵在中,

分别是 中点,

平面

平面

平面

)证明:∵在等边中,

是棱中点,

又∵在正三棱柱中,

平面

平面

点,

平面

平面

平面

∴平面平面

)作点,

是四棱锥高,

底面积

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点分别为椭圆的右顶点、上顶点和右焦点,且

(1)求椭圆的标准方程;

(2)设直线与椭圆交于两点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线与圆相切,且交椭圆 两点, 是椭圆的半焦距, .

(1)求的值;

(2)为坐标原点,若,求椭圆的方程;

(3)在(2)的条件下,设椭圆的左右顶点分别为 ,动点,直线 与直线分别交于 两点,求线段的长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两条不重合的直线和两个不重合的平面,若,则下列四个命题:①若,则;②若,则; ③若,则;④若,则,其中正确命题的个数是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数),曲线在点处的切线与直线垂直.

(Ⅰ)试比较的大小,并说明理由;

(Ⅱ)若函数有两个不同的零点 ,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点,动圆经过点且和直线相切,记动圆的圆心的轨迹为曲线.

(1)求曲线的方程;

(2)设曲线上一点的横坐标为,过的直线交于一点,交轴于点,过点的垂线交于另一点,若的切线,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校随机抽取100名学生调查寒假期间学生平均每天的学习时间,被调查的学生每天用于学习的时间介于1小时和11小时之间,按学生的学习时间分成5组:第一组,第二组,第三组,第四组,第五组,绘制成如图所示的频率分布直方图.

(1)求学习时间在的学生人数;

(2)现要从第三组、第四组中用分层抽样的方法抽取6人,从这6人中随机抽取2人交流学习心得,求这2人中至少有1人学习时间在第四组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数y=x2+(a+2)x﹣3,x∈[a,b]的图象关于直线x=1对称.
(1)求a、b的值和函数的零点
(2)当函数f(x)的定义域是[0,3]时,求函数f(x)的值域..

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据国家环保部最新修订的《环境空气质量标准》规定:居民区PM2.5的年平均浓度不得超过35微克/立方米,PM2.524小时平均浓度不得超过75微克/立方米。某城市环保部分随机抽取的一居民区过去20PM2.524小时平均浓度的监测数据,数据统计如下:

组别

PM2.5平均浓度

频数

频率

第一组

(0,25]

3

0.15

第二组

(25,50]

12

0.6

第三组

(50,75]

3

0.15

第四组

(75,100]

2

0.1

(Ⅰ)从样本中PM2.5的24小时平均浓度超过50微克/立方米的5天中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率;

(II)求样本平均数,并根据样本估计总计的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?并说明理由.

查看答案和解析>>

同步练习册答案