【题目】已知:正三棱柱中, , , 为棱的中点.
()求证: 平面.
()求证:平面平面.
()求四棱锥的体积.
【答案】(1)见解析;(2)见解析;(3).
【解析】试题分析:
(1)要证线面平行,就是要证线线平行,考虑过直线的平面与平面的交线(其中是与的交点),而由中位线定理易得,从而得线面平行;
(2)由于是正三角形,因此有,从而只要再证与平面内另一条直线垂直即可,这可由正棱柱的侧棱与底面垂直得到,从而得线面垂直,于是有面面垂直;
(3)要求四棱锥的体积,由正三棱柱的性质知中,边的高就是四棱锥的高,再求得四边形的面积,即可得体积.
试题解析:
()证明:连接,交于点,连接,
∵在中,
, 分别是, 中点,
∴,
∵平面,
平面,
∴平面,
()证明:∵在等边中,
是棱中点,
∴,
又∵在正三棱柱中,
平面,
平面,
∴,
∵点,
, 平面,
∴平面,
∵平面,
∴平面平面.
()作于点,
∴是四棱锥高,
,
底面积,
.
科目:高中数学 来源: 题型:
【题目】已知圆,直线与圆相切,且交椭圆于, 两点, 是椭圆的半焦距, .
(1)求的值;
(2)为坐标原点,若,求椭圆的方程;
(3)在(2)的条件下,设椭圆的左右顶点分别为, ,动点,直线, 与直线分别交于, 两点,求线段的长度的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两条不重合的直线和两个不重合的平面,若,则下列四个命题:①若,则;②若,则; ③若,则;④若,则,其中正确命题的个数是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点,动圆经过点且和直线相切,记动圆的圆心的轨迹为曲线.
(1)求曲线的方程;
(2)设曲线上一点的横坐标为,过的直线交于一点,交轴于点,过点作的垂线交于另一点,若是的切线,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校随机抽取100名学生调查寒假期间学生平均每天的学习时间,被调查的学生每天用于学习的时间介于1小时和11小时之间,按学生的学习时间分成5组:第一组,第二组,第三组,第四组,第五组,绘制成如图所示的频率分布直方图.
(1)求学习时间在的学生人数;
(2)现要从第三组、第四组中用分层抽样的方法抽取6人,从这6人中随机抽取2人交流学习心得,求这2人中至少有1人学习时间在第四组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数y=x2+(a+2)x﹣3,x∈[a,b]的图象关于直线x=1对称.
(1)求a、b的值和函数的零点
(2)当函数f(x)的定义域是[0,3]时,求函数f(x)的值域..
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据国家环保部最新修订的《环境空气质量标准》规定:居民区PM2.5的年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米。某城市环保部分随机抽取的一居民区过去20天PM2.5的24小时平均浓度的监测数据,数据统计如下:
组别 | PM2.5平均浓度 | 频数 | 频率 |
第一组 | (0,25] | 3 | 0.15 |
第二组 | (25,50] | 12 | 0.6 |
第三组 | (50,75] | 3 | 0.15 |
第四组 | (75,100] | 2 | 0.1 |
(Ⅰ)从样本中PM2.5的24小时平均浓度超过50微克/立方米的5天中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率;
(II)求样本平均数,并根据样本估计总计的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com