【题目】设点
,动圆
经过点
且和直线
相切,记动圆的圆心
的轨迹为曲线
.
(1)求曲线
的方程;
(2)设曲线
上一点
的横坐标为
,过
的直线交
于一点
,交
轴于点
,过点
作
的垂线交
于另一点
,若
是
的切线,求
的最小值.
【答案】(1)
(2)![]()
【解析】试题分析:(1)先利用抛物线的定义判定动点轨迹是一个抛物线,再利用待定系数法求出抛物线的方程;(2)设出直线方程,联立直线和抛物线的方程,得到关于
的一元二次方程,利用根与系数的关系和导数的几何意义进行求解.
试题解析:(1)过点
作直线
垂直于直线
于点
,由题意得
,所以动点
的轨迹是以
为焦点,直线
为准线的抛物线.所以抛物线
得方程为
.
(2)由题意知,过点
的直线
斜率存在且不为
,设其为
,则
,当
,则
.联立方程
,整理得:
.即
,解得
或
,
,而
,所以直线
斜率为
,
,联立方程
,整理得:
,即
,解得
,或
.
.
而抛物线在点
的切线斜率,
,
是抛物线的切线,
,整理得
,解得
(舍去),或
.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,曲线
的方程为
,在以原点为极点,
轴的非负关轴为极轴的极坐标系中,直线
的极坐标方程为
.
(1)将
上的所有点的横坐标和纵坐标分别伸长到原来的2倍和
倍后得到曲线
,求曲线
的参数方程;
(2)若
分别为曲线
与直线
的两个动点,求
的最小值以及此时点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中
①函数f(x)=(
)x的递减区间是(﹣∞,+∞)
②已知函数f(x)的定义域为(0,1),则函数f(x+1)的定义域为(1,2);
③已知(x,y)映射f下的象是(x+y,x﹣y),那么(4,2)在f下的原象是(3,1).
其中正确命题的序号为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:
质量指标值分组 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125) |
频数 | 6 | 26 | 38 | 22 | 8 |
(1)作出这些数据的频率分布直方图;
(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);
![]()
(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,该学校对100名高一新生进行了问卷调查,得到如下列联表:
喜欢游泳 | 不喜欢游泳 | 合计 | |
男生 | 10 | ||
女生 | 20 | ||
合计 |
已知在这100人中随机抽取1人抽到喜欢游泳的学生的概率为
.
(1)请将上述列联表补充完整;
(2)并判断是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由;
(3)已知在被调查的学生中有5名来自甲班,其中3名喜欢游泳,现从这5名学生中随机抽取2人,求恰好有1人喜欢游泳的概率.
下面的临界值表仅供参考:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:
,其中
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某次数学考试试题中共有
道选择题,每道选择题都有
个选项,其中仅有一个是正确的.评分标准规定:“每题只选
项,答对得
分,不答或答错得
分.”某考生每道题都给了一个答案,已确定有
道题的答案是正确的,而其余题中,有两道题都可判断出两个选项是错误的有一道题可以判断一个选项是错误的,还有一道题因不理解题意只能乱猜,试求出该考生:
(Ⅰ)得
分的概率;
(Ⅱ)所得分数
的数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
(
为常数).
(Ⅰ)求函数
在点
处的切线方程;
(Ⅱ)当函数
在
处取得极值
,求函数
的解析式;
(Ⅲ)当
时,设
,若函数
在定义域上存在单调减区间,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com