精英家教网 > 高中数学 > 题目详情

【题目】某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,该学校对100名高一新生进行了问卷调查,得到如下列联表:

喜欢游泳

不喜欢游泳

合计

男生

10

女生

20

合计

已知在这100人中随机抽取1人抽到喜欢游泳的学生的概率为

(1)请将上述列联表补充完整;

(2)并判断是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由;

(3)已知在被调查的学生中有5名来自甲班,其中3名喜欢游泳,现从这5名学生中随机抽取2人,求恰好有1人喜欢游泳的概率.

下面的临界值表仅供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:,其中

【答案】(1)列联表见解析;(2)的把握认为喜欢游泳与性别有关;(3.

【解析】

试题分析:(1)根据题意完成列联表;(2)根据给出的公式求出相关系数的值,对比临界值表,若,则有的把握认为喜欢游泳与性别有关,否则无关;(3名学生中喜欢游泳的名学生记为,另外名学生记为,任取名学生,列出所有可能情况,从中找出从这名学生中随机抽取人,恰好有人喜欢游泳的情况,作比即得所求的概率.

试题解析:(1)因为在100人中随机抽取1人抽到喜欢游泳的学生的概率为

所以喜欢游泳的学生人数为人...................1分

其中女生有20人,则男生有40人,列联表补充如下:

喜欢游泳

不喜欢游泳

合计

男生

40

10

50

女生

20

30

50

合计

60

40

100

................................................4分

因为................... 7分

所以有99.9%的把握认为喜欢游泳与性别有关......................8分

(2)5名学生中喜欢游泳的3名学生记为,另外2名学生记为1,2,任取2名学生,则所有可能情况为,共10种.........10分

其中恰有1人喜欢游泳的可能情况为,共6种........... 11分

所以,恰好有1人喜欢游泳的概率为............12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的(
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两条不重合的直线和两个不重合的平面,若,则下列四个命题:①若,则;②若,则; ③若,则;④若,则,其中正确命题的个数是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点,动圆经过点且和直线相切,记动圆的圆心的轨迹为曲线.

(1)求曲线的方程;

(2)设曲线上一点的横坐标为,过的直线交于一点,交轴于点,过点的垂线交于另一点,若的切线,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校随机抽取100名学生调查寒假期间学生平均每天的学习时间,被调查的学生每天用于学习的时间介于1小时和11小时之间,按学生的学习时间分成5组:第一组,第二组,第三组,第四组,第五组,绘制成如图所示的频率分布直方图.

(1)求学习时间在的学生人数;

(2)现要从第三组、第四组中用分层抽样的方法抽取6人,从这6人中随机抽取2人交流学习心得,求这2人中至少有1人学习时间在第四组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 已知函数(a为常数).

(Ⅰ)当时,求函数的单调区间;

(Ⅱ)当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数y=x2+(a+2)x﹣3,x∈[a,b]的图象关于直线x=1对称.
(1)求a、b的值和函数的零点
(2)当函数f(x)的定义域是[0,3]时,求函数f(x)的值域..

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中, 底面,底面是直角梯形, ,点上,且

(Ⅰ)已知点上,且,求证:平面平面

(Ⅱ)当二面角的余弦值为多少时,直线与平面所成的角为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂某种产品的年固定成本为250万元,每生产千件,需另投入成本为,当年产量不足80千件时, (万元).当年产量不小于80千件时, (万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.

(Ⅰ)写出年利润(万元)关于年产量(千件)的函数解析式;

(Ⅱ)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

同步练习册答案