精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的方程为,在以原点为极点, 轴的非负关轴为极轴的极坐标系中,直线的极坐标方程为.

(1)将上的所有点的横坐标和纵坐标分别伸长到原来的2倍和倍后得到曲线,求曲线的参数方程;

(2)若分别为曲线与直线的两个动点,求的最小值以及此时点的坐标.

【答案】(Ⅰ)为参数);(Ⅱ)点的直角坐标为时, 取得最小值.

【解析】试题分析:

(1)由题意可知曲线的直角坐标方程为,则曲线的参数方程为为参数).

(2)利用题意得到关于的三角函数式,结合三角函数的性质可得点的直角坐标为时, 取得最小值.

试题解析:

(Ⅰ)在曲线上任取一点,设点的坐标为,则点在曲线上,满足,所以曲线的直角坐标方程为,曲线的参数方程为为参数).

(Ⅱ)直线的直角坐标方程为 ,设点,点到直线的距离为,当,即点的直角坐标为时, 取得最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆的半径为,圆心在轴正半轴上,直线与圆相切.

1)求圆的方程;

(2)过点的直线与圆交于不同的两点 且为时,求: 的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的函数f(x)=是奇函数.
(1)求a,b的值;
(2)判断函数f(x)的单调性,并用定义证明;
(3)若对于任意都有f(kx2)+f(2x﹣1)>0成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若关于的不等式上恒成立,求的取值范围;

(Ⅱ)设函数,在(Ⅰ)的条件下,试判断上是否存在极值.若存在,判断极值的正负;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点分别为椭圆的右顶点、上顶点和右焦点,且

(1)求椭圆的标准方程;

(2)设直线与椭圆交于两点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=kx(k≠0),且满足f(x+1)f(x)=x2+x,
(1)求函数f(x)的解析式;
(2)若函数f(x)为R上的增函数,h(x)= (f(x)≠1),问是否存在实数m使得h(x)的定义域和值域都为[m,m+1]?若存在,求出m的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的(
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,既是偶函数又在区间(﹣∞,0)上单调递增的是(
A.f(x)=
B.f(x)=x2+1
C.f(x)=x
D.f(x)=2x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点,动圆经过点且和直线相切,记动圆的圆心的轨迹为曲线.

(1)求曲线的方程;

(2)设曲线上一点的横坐标为,过的直线交于一点,交轴于点,过点的垂线交于另一点,若的切线,求的最小值.

查看答案和解析>>

同步练习册答案