精英家教网 > 高中数学 > 题目详情
14.已知等比数列{an}的前n项和Sn,公比为q,a1>0,a2S2=2,a4S4=40(n∈N*
(Ⅰ)求q的值;
(Ⅱ)若q<0,记数列{anSn}的前n项和为Tn,求Tn

分析 (I)由a2S2=2,a4S4=40(n∈N*),可得${a}_{1}^{2}q(1+q)$=2,${a}_{1}^{2}$q2(1+q+q2+q3)=40,解出即可得出.
(II)由q<0,a1>0,可得q=-2,a1=1,an=(-2)n-1,Sn=$\frac{1-(-2)^{n}}{3}$.anSn=$\frac{(-2)^{n-1}-(-2)^{2n-1}}{3}$,再利用等比数列的前n项和公式即可得出.

解答 解:(I)∵a2S2=2,a4S4=40(n∈N*),
∴${a}_{1}^{2}q(1+q)$=2,${a}_{1}^{2}$q2(1+q+q2+q3)=40,
可得:q2(1+q2)=20,解得q=±2.
(II)∵q<0,a1>0,∴q=-2,a1=1,
∴an=(-2)n-1,Sn=$\frac{1-(-2)^{n}}{1-(-2)}$=$\frac{1-(-2)^{n}}{3}$.
∴anSn=$\frac{(-2)^{n-1}-(-2)^{2n-1}}{3}$,
数列{(-2)n-1}的前n项和=1+(-2)+(-2)2+…+(-2)n-1=$\frac{1-(-2)^{n}}{1-(-2)}$=$\frac{1-(-2)^{n}}{3}$;
数列{22n-1}的前n项和=2+23+…+22n-1=$\frac{2[{4}^{n}-1]}{4-1}$=$\frac{2({4}^{n}-1)}{3}$.
∴数列{anSn}的前n项和为Tn=$\frac{\frac{1-(-2)^{n}}{3}+\frac{2({4}^{n}-1)}{3}}{3}$=$\frac{{2}^{2n+1}-(-2)^{n}-1}{9}$.

点评 本题考查了等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0.b>0)的右焦点为F2,M是双曲线C在第一象限上一点,N与M关于原点对称,MF2交双曲线C于另一点P,NF2⊥PF2,|NF2|=|PF2|,则双曲线C的渐近线为(  )
A.y=±2xB.y=±4xC.y=±$\frac{\sqrt{6}}{2}$xD.y=±$\frac{\sqrt{10}}{2}$x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若实数x,y满足不等式组$\left\{\begin{array}{l}y≤5\\ 2x-y+3≤0\\ x+y-1≥0\end{array}\right.$,则z=|x|+3y的最大值是19.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设集合A={x|x2≤4x},集合B={-1,2,-3,4},则A∩B=(  )
A.{-1,2}B.{2,4}C.{-3,-1}D.{-1,2,-3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1的焦点到渐近线的距离为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数$f(x)=x+\frac{a}{x}+b(x≠0)$,其中a,b∈R.若对于任意的$a∈[{\frac{1}{2},2}]$,不等式f(x)≤10在$x∈[{\frac{1}{4},\sqrt{3}}]$上恒成立,则b的取值范围是(  )
A.$({-∞,\frac{7}{4}}]$B.$({-∞,10-\frac{5}{3}\sqrt{3}}]$C.$({-∞,\frac{31}{4}}]$D.$({-∞,10-\frac{7}{6}\sqrt{3}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.命题“所有偶函数的图象关于y轴对称”的否定为(  )
A.所有偶函数的图象不关于y轴对称
B.存在偶函数的图象关于y轴对称
C.存在偶函数的图象不关于y轴对称
D.不存在偶函数的图象不关于y轴对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若执行如图的程序框图,输出S的值为6,则判断框中应填入的条件是(  )
A.k<32?B.k<65?C.k<64?D.k<31?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知数列{an}对任意n≥2的自然数均有an≤$\frac{{a}_{n-1}+{a}_{n+1}}{2}$,则下列命题正确的是(  )
A.$\frac{{a}_{7}-{a}_{2}}{5}≤\frac{{a}_{6}-{a}_{3}}{3}$B.a2+a7≤a3+a6
C.3(a7-a6)≥a6-a3D.a2+a3≥a6+a7

查看答案和解析>>

同步练习册答案