精英家教网 > 高中数学 > 题目详情
19.已知函数$f(x)=x+\frac{a}{x}+b(x≠0)$,其中a,b∈R.若对于任意的$a∈[{\frac{1}{2},2}]$,不等式f(x)≤10在$x∈[{\frac{1}{4},\sqrt{3}}]$上恒成立,则b的取值范围是(  )
A.$({-∞,\frac{7}{4}}]$B.$({-∞,10-\frac{5}{3}\sqrt{3}}]$C.$({-∞,\frac{31}{4}}]$D.$({-∞,10-\frac{7}{6}\sqrt{3}}]$

分析 根据x+$\frac{a}{x}$函数的性质可判断当a最小时,x越大函数值越大,当a越大时,x越小函数值越大,只需比较最大的即可.

解答 解:∵对于任意的$a∈[{\frac{1}{2},2}]$,不等式f(x)≤10在$x∈[{\frac{1}{4},\sqrt{3}}]$上恒成立,
∴当a=$\frac{1}{2}$时,f(x)最大值为f($\sqrt{3}$)=$\frac{7\sqrt{3}}{6}$+b,
当a=2时,f(x)最大值为f($\frac{1}{4}$)=$\frac{33}{4}$+b,
显然$\frac{33}{4}$+b>$\frac{7\sqrt{3}}{6}$+b,
∴$\frac{33}{4}$+b≤10,
∴b≤$\frac{7}{4}$,
故选A.

点评 本题考查了对抽象函数x+$\frac{a}{x}$的深刻理解和恒成立问题的转换.恒成立问题即最值问题,牢记这一转换.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设等差数列{an}的前n项和为Sn,且满足S2016>0,S2017<0,对任意正整数n,都有|an|≥|ak|,则k的值为(  )
A.1006B.1007C.1008D.1009

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某服装设计公司有1200名员工,其中老年、中年、青年所占的比例为1:5:6,公司十年庆典活动特别邀请了5位当地的歌手和公司的36名员工同台表演节目,其中员工按老年中年、青年进行分层抽样,则参演的中年员工的人数为15.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an}的公差d<0,a2+a6=10,a2a6=21.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=2${\;}^{{a}_{n}}$,记数列{bn}前n项的乘积为Tn,求Tn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等比数列{an}的前n项和Sn,公比为q,a1>0,a2S2=2,a4S4=40(n∈N*
(Ⅰ)求q的值;
(Ⅱ)若q<0,记数列{anSn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设函数f(x)=$\left\{\begin{array}{l}{\sqrt{x-1},x≥2}\\{lo{g}_{2}({2}^{x}+1),0≤x<2}\end{array}\right.$,则f(f(1))=2,f(x)最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知等比数列{an}的前n项和为Sn,an>0,a1=$\frac{2}{3}$,且-$\frac{3}{{a}_{2}}$,$\frac{1}{{a}_{3}}$,$\frac{1}{{a}_{4}}$,成等差数列.
(1)求数列{an}的通项公式;
(2)设数列{an}满足bn•log3(1-Sn+1)=1,求满足方程b1b2+b2b3+…+bnbn+1=$\frac{504}{1009}$的正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)是定义在R上的奇函数,满足f($\frac{3}{2}$-x)=f(x),f(-2)=-3,若数列{an}的前n项和Sn满足$\frac{S_n}{n}=\frac{{2{a_n}}}{n}+1$,则f(a5)+f(a6)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.数列{an}的通项公式an=n+$\frac{100}{n}$,则|a1-a2|+|a2-a3|+…+|a99-a100|=162.

查看答案和解析>>

同步练习册答案