分析 如图所示,①当点P与短轴的顶点重合时,△F1F2P构成以F1F2为底边的等腰三角形,此时有2个.
②当△F1F2P构成以F1F2为一腰的等腰三角形时,共有4个.
解答 解:如图所示,![]()
①当点P与短轴的顶点重合时,
△F1F2P构成以F1F2为底边的等腰三角形,
此种情况有2个满足条件的等腰△F1F2P;
②当△F1F2P构成以F1F2为一腰的等腰三角形时,共有4个.
以F2P作为等腰三角形的底边为例,
∵F1F2=F1P,
∴点P在以F1为圆心,半径为焦距2c的圆上
因此,当以F1为圆心,半径为2c的圆与椭圆C有2交点时,
存在2个满足条件的等腰△F1F2P.
同理可得:当以F2为圆心,半径为2c的圆与椭圆C有2交点时,存在2个满足条件的等腰△F1F2P.
综上可得:满足条件的使得△F1F2P是等腰三角形的点P的个数为6.
故答案为:6.
点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题、等腰三角形,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 9 | C. | 12 | D. | 14 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com