精英家教网 > 高中数学 > 题目详情

【题目】如图是总体的一个样本频率分布直方图,且在内频数为8.求:

1)求样本容量;

2)若在内的小矩形面积为0.06,求在内的频数和样本在内的频率.

【答案】150230.78

【解析】

1)先根据频率分布直方图求得内对应的频率,再根据在内频数为8,求得样本容量为.

2)由内的小矩形面积为,得到在内频率为,又因为样本容量为50,得到内的频数,再根据内频数为8,得到内的频数,进而得内频率.

1)由频率分布直方图可知: 对应y轴的数字为,且组距为3

所以对应频率为

又已知在内频数为8

所以样本容量为.

2)因为内的小矩形面积为

所以内频率为,且样本容量为50

所以内的频数为

又因为内的频数为8

所以内的频数为50-3-8=39

所以内的频率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,求函数的极小值;

(2)设函数,试问:在定义域内是否存在三个不同的自变量使得的值相等,若存在,请求出的范围,若不存在,请说明理由?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正四棱锥中,为底面正方形的中心,侧棱与底面所成的角的正切值为

1)求侧面与底面所成的二面角的大小;

2)若的中点,求异面直线所成角的正切值;

3)问在棱上是否存在一点,使⊥侧面,若存在,试确定点的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,共享单车已经悄然进入了广大市民的日常生活,并慢慢改变了人们的出行方式.为了更好地服务民众,某共享单车公司在其官方中设置了用户评价反馈系统,以了解用户对车辆状况和优惠活动的评价.现从评价系统中选出条较为详细的评价信息进行统计,车辆状况的优惠活动评价的列联表如下:

对优惠活动好评

对优惠活动不满意

合计

对车辆状况好评

对车辆状况不满意

合计

(1)能否在犯错误的概率不超过的前提下认为优惠活动好评与车辆状况好评之间有关系?

(2)为了回馈用户,公司通过向用户随机派送每张面额为元,元,元的 三种骑行券.用户每次使用扫码用车后,都可获得一张骑行券.用户骑行一次获得元券,获得元券的概率分别是,且各次获取骑行券的结果相互独立.若某用户一天使用了两次该公司的共享单车,记该用户当天获得的骑行券面额之和为,求随机变量的分布列和数学期望.

参考数据:

参考公式:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,左顶点为,离心率为,点是椭圆上的动点,的面积的最大值为.

(1)求椭圆的方程;

(2)设经过点的直线与椭圆相交于不同的两点,线段的中垂线为.若直线与直线相交于点,与直线相交于点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为,其中为参数,在以坐标原点为极点, 轴的正半轴为极轴的极坐标系中,点的极坐标为, 直线的极坐标方程为.

(1)求直线的直角坐标方程与曲线的普通方程;

(2)若是曲线上的动点, 为线段的中点.求点到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】5G网络是第五代移动通信网络,其峰值理论传输速度可达每81GB,比4G网络的传输速度快数百倍.举例来说,一部1G的电影可在8秒之内下载完成.随着5G技术的诞生,用智能终端分享3D电影、游戏以及超高画质(UHD)节目的时代正向我们走来.某手机网络研发公司成立一个专业技术研发团队解决各种技术问题,其中有数学专业毕业,物理专业毕业,其它专业毕业的各类研发人员共计1200人.现在公司为提高研发水平,采用分层抽样抽取400人按分数对工作成绩进行考核,并整理得如上频率分布直方图(每组的频率视为概率).

1)从总体的1200名学生中随机抽取1人,估计其分数小于50的概率;

2)研发公司决定对达到某分数以上的研发人员进行奖励,要求奖励研发人员的人数达到30%,请你估计这个分数的值;

3)已知样本中有三分之二的数学专业毕业的研发人员分数不低于70分,样本中不低于70分的数学专业毕业的研发人员人数与物理及其它专业毕业的研发人员的人数和相等,估计总体中数学专业毕业的研发人员的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以平面直角坐标系的原点O为极点,x轴的正半轴为极轴,建立极坐标系,并在两种坐标系中取相同的长度单位.曲线的极坐标方程为,曲线的参数方程为为参数).

1)求曲线的直角坐标方程及曲线的普通方程;

2)已知点,直线l的参数方程为t为参数),设直线l与曲线交于MN两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形和菱形所在的平面相互垂直,,的中点.

(1)求证:平面

(2)若,求二面角的余弦值.

查看答案和解析>>

同步练习册答案