精英家教网 > 高中数学 > 题目详情

【题目】如图,矩形和菱形所在的平面相互垂直,,的中点.

(1)求证:平面

(2)若,求二面角的余弦值.

【答案】(Ⅰ)见解析;(Ⅱ)

【解析】

(1)由面面垂直性质定理可得平面,即,根据菱形的性质可得,结合线面垂直判定定理即可的结果;(2)以为原点,轴,轴,轴,建立空间直角坐标系,分别求出平面以及平面的法向量,求出法向量的夹角即可得二面角的余弦值.

(1)证明:∵矩形和菱形所在的平面相互垂直,

∵矩形菱形,∴平面

平面,∴

∵菱形中,的中点.

,即

,∴平面.

(2)由(1)可知两两垂直,以A为原点,AG为x轴,AF为y轴,AD为z轴,

建立空间直角坐标系,设

,故

设平面的法向量

,取,得

设平面的法向量

,取,得

设二面角的平面角为,则

易知为钝角,∴二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图是总体的一个样本频率分布直方图,且在内频数为8.求:

1)求样本容量;

2)若在内的小矩形面积为0.06,求在内的频数和样本在内的频率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆

1)若直线过定点,且与圆C相切,求的方程.

2)若圆D的半径为3,圆心在直线上,且与圆C外切,求圆D的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .若gx)存在2个零点,则a的取值范围是

A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数e为自然对数的底数.

1)当时,求函数处的切线方程;

2)若函数只有一个零点,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着手机的发展,“微信”越来越成为人们交流的一种方式.某机构对“使用微信交流”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信交流”赞成人数如下表.

年龄(单位:岁)

频数

5

10

15

10

5

5

赞成人数

5

10

12

7

2

1

(Ⅰ)若以“年龄”45岁为分界点,由以上统计数据完成下面列联表,并判断是否有99%的把握认为“使用微信交流”的态度与人的年龄有关;

年龄不低于45岁的人数

年龄低于45岁的人数

合计

赞成

不赞成

合计

(Ⅱ)若从年龄在的被调查人中按照分层抽样的方法选取6人进行追踪调查,并给予其中3人“红包”奖励,求3人中至少有1人年龄在的概率.

参考数据如下:

附临界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

的观测值: (其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1y=cos xC2y=sin (2x+),则下面结论正确的是( )

A. C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2

B. C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2

C. C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2

D. C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义域为的奇函数.

1)求证:函数上是增函数;

2)不等式对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,求函数的最小值;

2)若对于任意恒成立,求的取值范围;

3)若,求函数的最小值.

查看答案和解析>>

同步练习册答案