精英家教网 > 高中数学 > 题目详情
若点P(x,y)满足约束条件
x ≥ 0
x-2y ≤ a
x+y ≤ 2
且点P(x,y)所形成区域的面积为12,则实数a的值为
 
考点:简单线性规划
专题:计算题,作图题,不等式的解法及应用
分析:由题意作出其平面区域,由点P(x,y)所形成区域的面积为12可得a>0,从而求得a.
解答: 解:由题意作出其平面区域,

∵点P(x,y)所形成区域的面积为12,
∴a>0,
由x-2y=a,令x=0得,
y=-
a
2

x-2y=a
x+y=2
解得,
x=
a+4
3

则S=
1
2
×(2+
a
2
)×
a+4
3
=12,
解得,a=8.
故答案为:8.
点评:本题考查了简单线性规划,作图要细致认真,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实数a,b满足3a+b=1,则
a+
1
2
+
b+
1
2
的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)的图象过点(0,4),对任意x满足f(3-x)=f(x),且有最小值是
7
4

(1)求f(x)的解析式;
(2)求函数h(x)=f(x)-(2t-3)x在区间[0,1]上的最小值,其中t∈R;
(3)在区间[-1,3]上,y=f(x)的图象恒在函数y=2x+m的图象上方,试确定实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x3(x<0)
-tanx(0≤x<
π
2
)
,则f(f(
π
4
))=(  )
A、1B、-2C、2D、-1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,P是正方体ABCD-A1B1C1D1中BC1上的动点,下列命题:
①AP⊥B1C;
②BP与CD1所成的角是60°;
VP-AD1C为定值;
④B1P∥平面D1AC;
⑤二面角P-AB-C的平面角为45°.
其中正确命题的个数有(  )
A、2个B、3个C、4个D、5个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
-4x+2+3a,x<-
1
2
4+3a,-
1
2
≤x<
3
2
4x-2+3a,x≥
3
2

(Ⅰ)当a=0时,写出不等式f(x)≥6的解集;
(Ⅱ)若不等式f(x)≥a2对一切实数x恒成立时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A′B′C′中,底面ABC是正三角形,AA′⊥底面ABC,且AB=1,AA′=2,则直线BC′与平面ABB′A′所成角的正弦值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的中心是原点,焦点到渐近线的距离为2
3
,一条准线方程为y=-1,则其渐近线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数y=f(x)满足以下三个条件:
①对于任意的x∈R,都有  f(x+1)=
1
f(x)

②函数y=f(x+1)的图象关于y轴对称;
③对于任意的x1,x2∈[0,1],且x1<x2,都有f(x1)>f(x2).
则f(
3
2
),f(2),f(3)从小到大排列是
 

查看答案和解析>>

同步练习册答案