精英家教网 > 高中数学 > 题目详情

如图,四边形ABCD为矩形,PD⊥平面ABCD,PD=DC=2,BC=数学公式,E是PC的中点.
(1)证明:PA∥平面EDB;
(2)求直线BE与平面ABCD所成角的大小.

(Ⅰ)证明:连接AC,设AC∩BD=O,连接EO,
∵四边形ABCD为矩形,∴O为AC的中点.
∴OE为△PAC的中位线.
∴PA∥OE,而OE?平面EDB,PA?平面EBD,
∴PA∥平面EDB.
(Ⅱ)解:取DC中点F,连接BF,则EF∥PD
∵PD⊥平面ABCD,∴EF⊥平面ABCD,
∴∠EBF为直线BE与平面ABCD所成角
∵四边形ABCD为矩形,PD=DC=2,BC=,F为DC中点
∴EF=1,BF=
∴tan∠EBF==
∴∠EBF=
∴直线BE与平面ABCD所成角为
分析:(Ⅰ)连接AC,设AC∩BD=O,连接EO,利用三角形中位线的性质,证明线线平行,从而可得线面平行;
(Ⅱ)取DC中点F,连接BF,则EF∥PD,EF⊥平面ABCD,从而可得∠EBF是直线BE与平面ABCD所成角,即可求得结论.
点评:本题考查线面平行.考查线面角,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,四边形ABCD与A′ABB′都是边长为a的正方形,点E是A′A的中点,A′A⊥平面ABCD.
(1) 求证:A′C∥平面BDE;
(2) 求证:平面A′AC⊥平面BDE
(3) 求平面BDE与平面ABCD所成锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=
12
PD.
(Ⅰ)证明PQ⊥平面DCQ;
(Ⅱ)求棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD为矩形,且AD=2,AB=1,PA⊥平面ABCD,PA=1,E为BC的中点.
(1)求点C到面PDE的距离;  
(2)求二面角P-DE-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD内接于⊙O,如果它的一个外角∠DCE=64°,那么∠BOD
128°
128°

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=
12
PD.
(1)证明:平面PQC⊥平面DCQ;
(2)求二面角D-PQ-C的余弦值.

查看答案和解析>>

同步练习册答案