【题目】已知一元二次函数的图像与轴有两个不同的交点,其中一个交点的坐标为且当时,恒有
(1)求出不等式的解(用表示);
(2)若以二次函数的图像与坐标轴的三个交点为顶点的三角形的面积为8,求的取值范围;
(3)若不等式对所有恒成立,求实数的取值范围.
【答案】(1);(2);(3).
【解析】
(1)利用求得关于的表达式,进而求得不等式的解集.
(2)根据(1)求得三个交点的坐标,利用面积列方程,求得的表达式,进而求得的取值范围.
(3)根据(1)中求得的表达式化简不等式.对分成三种情况进行分类讨论,由此求得的取值范围.
(1)依题意可知,即①,由,故①式可化为.所以.令,解得,.由于当时,恒有,所以.令,解得.所以不等式的解集为.
(2)结合(1)可知,三个交点的坐标为,且.根据三角形的面积得,化简得,时等号成立,故的取值范围是.
(3)由于,所以不等式可化为②.
当时,②成立.
当时,②可化为,而,所以.
当时,②可化为,而,所以.
综上所述,的取值范围是.
科目:高中数学 来源: 题型:
【题目】椭圆的中心在原点,焦点在坐标轴上,焦距为2.一双曲线和该椭圆有公共焦点,且双曲线的实半轴长比椭圆的长半轴长小4,双曲线离心率与椭圆离心率之比为7∶3,求椭圆和双曲线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的离心率为,左顶点到直线的距离为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线与椭圆C相交于A、B两点,若以AB为直径的圆经过坐标原点O,试探究:点O到直线AB的距离是否为定值?若是,求出这个定值;否则,请说明理由;
(Ⅲ)在(Ⅱ)的条件下,试求△AOB面积S的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是一景区的截面图,是可以行走的斜坡,已知百米,是没有人行路(不能攀登)的斜坡,是斜坡上的一段陡峭的山崖.假设你(看做一点)在斜坡上,身上只携带着量角器(可以测量以你为顶点的角).
(1)请你设计一个通过测量角可以计算出斜坡的长的方案,用字母表示所测量的角,计算出的长,并化简;
(2)设百米,百米,,,求山崖的长.(精确到米)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》卷第五《商功》中有记载:“刍甍者,下有袤有广,而上有袤无广.刍,草也.甍,屋盖也.”翻译为“底面有长有宽为矩形,顶部只有长没有宽为一条棱.刍甍字面意思为茅草屋顶.”现有一个刍甍,如图,四边形为正方形,四边形、为两个全等的等腰梯形,,,若这个刍甍的体积为,则的长为( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数.当时,的值为2千克/年;当时,是的一次函数;当时,因缺氧等原因,的值为0千克/年.
(1)当时,求关于的函数表达式.
(2)当养殖密度为多少时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,曲线的参数方程为(为参数,且),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为.
(1)将曲线的参数方程化为普通方程,并将曲线的极坐标方程化为直角坐标方程;
(2)求曲线与曲线交点的极坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com