精英家教网 > 高中数学 > 题目详情

【题目】若全集U=R,函数y= + 的定义域为A,函数y= 的值域为B.
(1)求集合A,B;
(2)求(UA)∩(UB).

【答案】
(1)解:由题意:函数y= +

其定义域满足:

解得:x≥2.

所以集合A={x|x≥2}.

函数

由二次函数的图象及性质:可得值域y:0≤y≤3

∴集合B={y|0≤y≤3}.


(2)解:由(1) 可得:集合A={x|x≥2},集合B={y|0≤y≤3}.

那么:CUA={x|x<2},

CUB={x|x<0或x>3},

∴(CUA)∩(CUB)={x|x<0}


【解析】(1)根据函数解析式由意义求解A集合,求出函数y= 的值域即得集合B;(2)求出UA和UB.在求(UA)∩(UB)即可.
【考点精析】利用交、并、补集的混合运算和函数的定义域及其求法对题目进行判断即可得到答案,需要熟知求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法;求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)=a (0<a<1)的单调递增区间是(
A.(﹣∞,
B.( ,+∞)
C.(﹣∞,﹣
D.(﹣ ,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小区提倡低碳生活,环保出行,在小区提供自行车出租.该小区有40辆自行车供小区住户租赁使用,管理这些自行车的费用是每日92元,根据经验,若每辆自行车的日租金不超过5元,则自行车可以全部出租,若超过5元,则每超过1元,租不出的自行车就增加2辆,为了便于结算,每辆自行车的日租金x元只取整数,用f(x)元表示出租自行车的日纯收入(日纯收入=一日出租自行车的总收入﹣管理费用)
(1)求函数f(x)的解析式及其定义域;
(2)当租金定为多少时,才能使一天的纯收入最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)= 的定义域是(
A.(0,2)
B.[0,2]
C.(0,1)∪(1,2)
D.[0,1)∪(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有甲,乙,丙,丁四位同学课余参加巴蜀爱心社和巴蜀文学风的活动,每人参加且只能参加一个社团的活动,并且参加每个社团都是等可能的.

(1)求巴蜀爱心社和巴蜀文学风都至少有1人参加的概率;

(2)求甲,乙在同一个社团,丙,丁不在同一个社团的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆C: 的离心率e= ,左顶点M到直线 =1的距离d= ,O为坐标原点.
(1)求椭圆C的方程;
(2)设直线l与椭圆C相交于A,B两点,若以AB为直径的圆经过坐标原点,证明:点O到直线AB的距离为定值;
(3)在(2)的条件下,试求△AOB的面积S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)离心率为,过点的椭圆的两条切线相互垂直.

(1)求此椭圆的方程;

(2)若存在过点的直线交椭圆于两点,使得为右焦点),求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥P﹣ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面 ABCD,且PA=AD=DB= ,AB=1,M是PB的中点.
(1)证明:面PAD⊥面PCD;
(2)求AC与PB所成的角;
(3)求平面AMC与平面BMC所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图甲,已知矩形中, 上一点,且,垂足为,现将矩形沿对角线折起,得到如图乙所示的三棱锥.

(Ⅰ)在图乙中,若,求的长度;

(Ⅱ)当二面角等于时,求二面角的余弦值.

查看答案和解析>>

同步练习册答案