精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3-(a+1)x2-4(a+5)x,g(x)=5lnx+ax2-x+5,其中a∈R。
(Ⅰ)若函数f(x),g(x)有相同的极值点,求a的值;
(Ⅱ)若存在两个整数m,n,使得函数f(x),g(x)在区间(m,n)上都是减函数.求n的最大值,及n取最大值时a的取值范围。
解:(Ⅰ)由已知得 f'(x)=x2-(a+1)x-4(a+5),
g'(x)=+ax-1=

由①得x=-4或x=a+5,
由③知,只能a+5>0,即a>-5,
把x=a+5代人②,
解得a=0或a=-4或a=-6(舍去),
经检验,当a=0或a=-4时,函数f(x),g(x)有相同的极值点,
所以,a的值为0或-4;
(Ⅱ)由
设g'(x)<0,即ax2-x+5<0的解集为M,及 N=(0,a+5),
则由题意得区间(m,n)M∩N,
令h(x)=ax2-x+5,
①当a<0时,因为h(0)=5>0,
故只能h(a+5)=a[(a+5)2-1] <0,
即a>-4或a<-6,又因为a>-5,
故-4<a<0,此时n≤a+5<5,
又m,n∈Z,所以m<n≤4,
当且仅当,即-1≤a≤时,n可以取4,
所以,n的最大整数为4;
②当a=0时,M∩N=,不合题意;
③当a>0时,因为,h(0)=5>0,
h(a+5)=a[(a+5)2-1]>0,
故只能,无解,
综上,n的最大整数为4,此时a的取值范围为
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案