精英家教网 > 高中数学 > 题目详情
(2013•绵阳二模)已知a、b∈R,那么“ab<0”是“方程ax2+by2=l表示双曲线”的(  )
分析:由实数的性质,可得当ab<0时,a,b异号,则ax2+by2=1表示双曲线,即“ab<0”⇒“ax2+by2=1表示双曲线”为真命题;反之根据双曲线的几何性质,可得ax2+by2=1表示双曲线时a,b异号,即ab<0,即“ax2+by2=1表示双曲线”⇒“ab<0”为真命题;进而根据充要条件的定义,即可得到答案.
解答:解:当ab<0时,a,b异号,
则ax2+by2=1表示双曲线,
故“ab<0”是“ax2+by2=1表示双曲线”的充分条件;
当ax2+by2=1表示双曲线时,a,b异号
则ab<0
故“ab<0”是“ax2+by2=1表示双曲线”的必要条件;
故“ab<0”是“ax2+by2=1表示双曲线”的充要条件;
故选C
点评:本题考查的知识点是必要条件,充分条件与充要条件的判断,双曲线的定义,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•绵阳二模)我们把离心率之差的绝对值小于
1
2
的两条双曲线称为“相近双曲线”.已知双曲线
x2
4
-
y2
12
=1
与双曲线
x2
m
-
y2
n
=1
是“相近双曲线”,则
n
m
的取值范围是
[
4
21
4
5
]∪[
5
4
21
4
]
[
4
21
4
5
]∪[
5
4
21
4
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•绵阳二模)对一切实数x,不等式x2+a|x|+1≥0恒成立,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•绵阳二模)已知△ABC的面积S满足3≤S≤3
3
,且
AB
BC
=6
AB
BC
的夹角为θ.
(Ⅰ)求θ的取值范围;
(Ⅱ)求函数f(θ)=sin2θ+2sinθcosθ+3cos2θ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•绵阳二模)已知函数f(x)=
13
x3-2x2+3x(x∈R)的图象为曲线C.
(1)求曲线C上任意一点处的切线的斜率的取值范围;
(2)若曲线C上存在两点处的切线互相垂直,求其中一条切线与曲线C的切点的横坐标取值范围;
(3)试问:是否存在一条直线与曲线C同时切于两个不同点?如果存在,求出符合条件的所有直线方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•绵阳二模)若loga(a2+1)<loga2a<0,则a的取值范围是(  )

查看答案和解析>>

同步练习册答案