精英家教网 > 高中数学 > 题目详情
设函数f(x)=x2+m(m∈R).
(1)如果m=
1
4
,方程y=f(x)-kx在[-1,1]上存在零点,求k的取值范围;
(2)如果m=-1,对任意x∈[
2
3
,+∞)
f(
x
m
)-4m2f(x)≤f(x-1)+4f(m)
恒成立,求实数m的取值范围;
(3)求h(x)=2f(x)+x|x-m|的最小值.
分析:(1)方程f(x)-kx=0,即x2-kx+
1
4
=0
,故方程在[-1,1]上有解.令g(x)=x2-kx+
1
4
.分对称轴在区间[-1,1]上,在区间的左侧、右侧三种情况,求出k的取值范围.
(2)当m=-1时,不等式即,
1
m2
-4m2≤-
3
x2
-
2
x
+1
x∈[
3
2
,+∞)
,利用二次函数的性质求出-
3
x2
-
2
x
+1
的最小值,从而求得实数m的取值范围.
(3)①当x≥m时,再分m≥0和m<0两种情况求出函数的最小值.②当x≤m时,再分m≥0和m<0两种情况求出函数的最小值.综合可得结论.
解答:解:(1)方程f(x)-kx=0,即x2-kx+
1
4
=0
,故方程在[-1,1]上有解.令g(x)=x2-kx+
1
4

①若对称轴x=
k
2
在[-1,1]上,则有 
-1≤
k
2
≤1
△≥0
g(-1)≥0 ,  或g(1)≥0
,解得-2≤k≤-1或1≤k≤2.…(2分)
②若对称轴 x=
k
2
在[-1,1]的左侧,则有 
k
2
<-1
g(-1)•g(1)≤0
,解得k<-2.…(4分)
③若对称轴 x=
k
2
在[-1,1]的右侧,则有
k
2
>1
g(-1)•g(1)≤0
 解得k≥2.
综合得k≤-1或k≥1.…(6分)
(2)当m=-1时,不等式f(
x
m
)-4m2f(x)≤f(x-1)+4f(m)
 即,
1
m2
-4m2≤-
3
x2
-
2
x
+1
x∈[
3
2
,+∞)
.…(8分)
因为y=-
3
x2
-
2
x
+1=-3(
1
x
+
1
3
)2+
4
3
1
x
∈(0,
2
3
]
,当
1
x
=
2
3
,x=
3
2
时,ymin=-
5
3

1
m2
-4m2≤-
5
3
,即(3m2+1)(4m2-3)≥0,∴m≤-
3
2
,或m≥
3
2
.…(10分)
(3)①当x≥m时,f(x)=3x2-mx+2m,如果m≥0,f(x)min=2m2+2m; 如果m<0,f(x)min=2m-
m2
12

②当x≤m时,f(x)=x2+mx+2m,如果m≥0,f(x)min=-
m2
4
+2m
;如果m<0,f(x)min=2m2+2m
由于2m2+2m-(-
m2
4
+2m)≥0
2m-
m2
12
-
(2m2+2m)≤0,
所以f(x)min=
2m-
m2
4
,m≥0
2m-
m2
12
,m<0.
. …(16分)
点评:本题主要考查函数的零点的判定定理,函数的恒成立问题,二次函数的性质的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x2+|x-2|-1,x∈R.
(1)判断函数f(x)的奇偶性;
(2)求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0与g(x0)<0同时成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+aln(x+1),a∈R.(注:(ln(x+1))′=
1x+1
).
(1)讨论f(x)的单调性.
(2)若f(x)有两个极值点x1,x2,且x1<x2,求f(x2)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-mlnx,h(x)=x2-x+a.
(1)若曲线y=f(x)在x=1处的切线为y=x,求实数m的值;
(2)当m=2时,若方程f(x)-h(x)=0在[1,3]上恰好有两个不同的实数解,求实数a的取值范围;
(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+x+aln(x+1),其中a≠0.
(1)若a=-6,求f(x)在[0,3]上的最值;
(2)若f(x)在定义域内既有极大值又有极小值,求实数a的取值范围;
(3)求证:不等式ln
n+1
n
n-1
n3
(n∈N*)恒成立.

查看答案和解析>>

同步练习册答案